
A Parallel Algorithm for Exact Structure Learning of
Bayesian Networks

Olga Nikolova, Jaroslaw Zola, and Srinivas Aluru
Department of Computer Engineering

Iowa State University
Ames, IA 50010

{olia,zola,aluru}@iastate.edu

Abstract

Given n random variables and a set of m observations of each of the n variables,
the Bayesian network (BN) structure learning problem is to infer a directed acyclic
graph on the n variables such that the implied joint probability distribution best
explains the set of observations. In this paper, we present a parallel algorithm for
exact BN structure learning that is work-optimal and communication-efficient1.
We demonstrate the applicability of our method by an implementation on the IBM
Blue Gene/L and an AMD Opteron cluster, and report extended experimental re-
sults that exhibit near perfect scaling.

1 Exact Estimation of a Bayesian Network Structure

Bayesian networks (BNs) are probabilistic graphical models which allow for a compact represen-
tation of the joint probability distribution (JPD) of a set of interacting variables of a given domain.
The pair (N,P) of a directed acyclic graph (DAG) N = (X , E) and a JPD P over X defines a BN
if each variable Xi ∈ X is independent of its non-descendants, given its parents. To evaluate the
posterior probability of a considered graph given a set of observations the Bayesian approach uti-
lizes a statistically motivated scoring function. Decomposable scoring functions have been widely
used, which can be defined as the sum of the individual score-contributions s (Xi, Pa (Xi)) of each
variable Xi ∈ X given its parents, i.e. Score (N) =

∑
Xi∈X s (Xi, Pa (Xi)). Optimizing such a

scoring criterion facilitates the discovery of a structure that best represents the observed data. The
problem of exact structure learning quickly becomes intractable due to its combinatorial search-
space, and has been shown to be NP-hard even for the case of bounded node in-degree. Parallel
algorithms have been developed for heuristics-based BN learning, particularly using meta-heuristics
and sampling techniques.2 Such methods trade off optimality for the ability to learn larger networks.
Constructing exact BNs without additional assumptions nevertheless remains valuable. In this pa-
per, we present a parallel algorithm for exact BN learning with nearly perfect load-balancing and
optimal parallel efficiency. To our knowledge, this is the first such algorithm for exact structure
learning. The presented work in exact Bayesian learning is intended to push the scale of networks
for which optimal structures can be estimated.

Given a set of observations Dn×m and a decomposable scoring function, the BN structure learn-
ing problem is to find a DAG N on the n random variables that optimizes Score (N), or equiv-
alently, finding the parents of each node in the DAG. Adopting a canonical representation of
the DAGs in conjunction with a decomposable scoring function permits a dynamic programming

1This algorithm was originally presented at HiPC (see footnote 4). Here, novel experimental results are
reported.

2O. Nikolova and S. Aluru. Parallel Discovery of Direct Causal Relations and Markov Blankets. Under
review.

1

(DP) approach first explored by Ott et al.3 Our parallel algorithm is based on the sequential
method of Ott et al., which we briefly describe here. Let A ⊂ X and Xi ∈ X − A. Us-
ing Dn×m, a scoring function s(Xi, A) determines the score of choosing A to be the set of par-
ents for Xi given Dn×m. Let F (Xi, A) denote the highest possible score that can be obtained
by choosing parents of Xi from A; i.e., F (Xi, A) = maxB⊆A s(Xi, B). A set B which max-
imizes the preceding equation is an optimal parents set for Xi from the candidate parents set
A. While F (Xi, A) can be computed by directly evaluating all 2|A| subsets of A, it is advan-
tageous to compute it based on the following recursive formulation. For any non-empty set A:
F (Xi, A) = max{s (Xi, A) ,maxXj∈A F (Xi, A− {Xj})}. An ordering of a set A ⊆ X is a
permutation π(A) of elements in A. A network on A is said to be consistent with a given order
π(A) if and only if ∀Xi ∈ A, the parents Pa (Xi) precede Xi in π. An optimal order π∗ (A)
is an order with which an optimal network on A is consistent. Let Xi be the last element in
π∗ (A). Then, the permutation π (A− {Xi}) obtained by leaving out the last element Xi is con-
sistent with an optimal network on A − {Xi}. We write this as π∗ (A) = π∗ (A− {Xi})Xi.
Given A ⊆ X and an order π(A), let Q (A, π(A)) denote the optimal score of a network on A
that is consistent with π(A): Q (A, π(A)) =

∑
Xi∈A F (Xi, {Xj | Xj precedes Xi in π (A)}).

Optimal score of a network on A ⊆ X is then given by Q∗(A) = Q (A, π∗ (A)). Our goal
is to find π∗(X) and the optimal network score Q∗(X), and estimate the corresponding DAG.
Like the F function, functions π∗ and Q can be computed using a recursive formulation. Con-
sider a subset A. To find π∗(A), we consider all possible choices for its last element: X∗i =
argmaxXi∈AQ (A, π∗(A− {Xi})Xi) = argmaxXi∈A (F (Xi, A− {Xi}) +Q∗ (A− {Xi})).
Then: Q∗ (A) = F (X∗i , A− {X∗i }) + Q∗ (A− {X∗i }), and π∗ (A) = π∗ (A−X∗i)X∗i . By
keeping track of the optimal parents sets for each of the variables in X , an optimal network is easily
reconstructed. Using these recursive formulations, a DP algorithm to compute an optimal BN can
be easily derived. The algorithm considers all subsets of X in increasing size order, starting from
the empty subset. When considering A, the goal is to compute F (Xi, A) for each Xi /∈ A and
Q (A, π∗(A− {Xi})Xi) for each Xi ∈ A. All the F and Q∗ values required for computing these
have already been computed when considering subsets A− {Xi} ∀Xi ∈ A.

2 Parallel Algorithm

{1,2,3}

{2,3}

{3}{2}{1}

{1,2} {1,3}

111

011 101 110

100010001

000{}

Figure 1: A lattice for 3 variables and its partitioning into 4 levels. The correspondence with a
3-dimensional hypercube is also shown.

To develop the parallel algorithm, it is helpful to visualize the DP algorithm as operating on the
lattice L formed by the partial order “set inclusion” on the power set of X . The lattice L is a
directed graph (V,E), where V = 2X and (B,A) ∈ E if B ⊂ A and |A| = |B| + 1. It is
naturally partitioned into levels, where level l ∈ [0, n] contains all subsets of size l (Fig. 1). A
parallel algorithm can be derived by mapping the nodes to processors and letting edges represent

3S. Ott, S. Imoto, and S. Miyano. Finding optimal models for small gene networks. In Pacific Symposium
on Biocomputing, pages 557− 567.

2

communication if the incident nodes are assigned to different processors. A node A at level l has l
incoming edges from nodesA−{Xi} for eachXi ∈ A, and n− l outgoing edges to nodesA∪{Xi}
for each Xi /∈ A. There are (n − l) F functions, and Q∗(A) and π∗(A) computed at node A. All
of these values need to be sent along each of the outgoing edges. On an outgoing edge to node
A ∪ {Xi}, the F (Xi, A) value is used in computing Q∗(A ∪ {Xi}), and the remaining F (Xj , A)
(Xj /∈ A and Xj 6= Xi) values are used in computing F (Xj , A ∪ {Xi}) values at node A ∪ {Xi}.
Note that each of the (n − l) F values at A are used in computing the Q∗ value at one of the n − l
nodes connected to A by outgoing edges. Each level in the lattice can be computed concurrently,
with data flowing from one level to the next.

Mapping to an n-dimensional Hypercube
Observe that the undirected version of L is equivalent to an n-dimensional (n-D) hypercube. Let
(X1, X2, . . . , Xn) be an arbitrary ordering of the nodes in the BN. A subset A can be represented
by an n-bit string ω, where ω[i] = 1 if Xi ∈ A, and ω[i] = 0 otherwise. As lattice edges connect
pairs of nodes that differ in the existence of one element, they naturally correspond to hypercube
edges (Fig. 1). This suggests an obvious parallelization on an n-D hypercube. While we expect
the number of processors p � 2n, we describe this parallelization in slightly greater detail due to
its use as a module in the development of our parallel algorithm. The n-D hypercube algorithm
runs in n + 1 steps. Let ω denote the id of a processor and let µ(ω) denote the number of 1’s in ω.
Each processor is active in only one time step – processor ω is active in time step µ(ω). It receives
(n − µ(ω) + 1) F values and one Q∗ value from each of its µ(ω) neighbors obtained by inverting
one of its 1 bits to zero. It then computes its own F and Q∗ values, and sends them to each of its
n− µ(ω) neighbors obtained by inverting one of its zero bits to 1.

Partitioning into k-dimensional Hypercubes
Let p = 2k be the number of processors, where k < n. We assume that the processors can commu-
nicate as in a hypercube. This is true of parallel computers connected as a hypercube, hypercubic
networks such as the butterfly, multistage interconnection networks such as the Omega, and point-
to-point communication models such as the permutation network model or the MPI programming
model. Our strategy is to decompose the n-D hypercube into 2n−k k-D hypercubes and map each
k-D hypercube to the p = 2k processors as described previously. Although the efficiency of such
a mapping by itself is suboptimal (Θ(1/k)), note that each processor is active in only one time step
and p � 2n. Therefore, we pipeline the execution of the k-D hypercubes to complete the parallel
execution in 2n−k + k time steps such that all processors are active except for the first k and last
k time steps during the build up and finishing off of the pipeline. For convenience of presentation,
we use the lattice L and the n-D hypercube interchangeably and use A to denote the lattice node
for subset A, and use ωA to denote the binary string denoting the corresponding hypercube node.
We number the positions of a binary string using 1 . . . n, and use ωA[i, j] to denote the substring
of ωA between and including positions i and j. We partition the n-D hypercube into 2n−k k-D
hypercubes based on the first n−k bits of node ids. For a lattice node ωA, ωA[1, n−k] specifies the
k-D hypercube it is part of and ωA[n−k+1, n] specifies the processor it is assigned to. Conversely,
a processor with id r computes for all lattice nodes ωA such that r = ωA[n− k + 1, n].

Pipelining Hypercubes
Each k-D hypercube is specified by an (n− k) bit string, which is the common prefix to the
2k lattice/k-D hypercube nodes that are part of this k-D sub-hypercube. The k-D hypercubes are
processed in the increasing order of the number of 1’s in their bit string specifications, and in lexico-
graphic order within the group of hypercubes with the same number of 1’s. This total order is used
to initiate the 2n−k k-D hypercube evaluations, starting from time step 0. If T denotes the time step
in whichHi is initiated andA is a lattice node mapped toHi, then processor with id ωA[n−k+1, n]
computes for the lattice node A in time step T + µ(ωA[n − k + 1, n]). This algorithm is correct,
work-optimal, and space efficient. (For proofs and details see Nikolova et al.4)

3 Experimental Validation

To assess the performance of the presented algorithm we developed a C++ and MPI implementation.
Experiments were performed on a 1,024 dual-core CPU Blue Gene/L (BG/L) and up to 256 8-core

4O. Nikolova, J. Zola, and S. Aluru. A parallel algorithm for exact Bayesian network inference. In HiPC,
pages 342− 349, 2009.

3

Table 1: Run-time results (in seconds) for: (i) varying number of variables n and fixed number
of observations m = 1000, and (ii) fixed number of variables n = 24 and varying number of
observations m. Experimental results are shown on both Blue Gene/L and AMD Opteron Cluster.

Blue Gene/L AMD Opteron Cluster
#CPU n = 24 m = 1000 #CPU n = 24 m = 1000
Cores m = 200 m = 1000 n = 16 n = 24 Cores m = 200 m = 1000 n = 16 n = 24

32 166 745 2 745
64 905 4237 12 4237 128 44 193 0.48 193

256 223 1054 3 1054 512 12 53 0.15 53
1024 55 264 0.79 264 1024 8 29 0.08 29
2048 28 133 0.42 133 2048 4 17 0.06 17

 0

 5

 10

 15

 20

 25

 30

64 1024 2048

R
el

at
iv

e
S

pe
ed

up

No. CPU Cores

m=200
m=1000

Linear Speedup

(a) Varying sample size with n = 24

 0

 5

 10

 15

 20

 25

 30

64 1024 2048

R
el

at
iv

e
S

pe
ed

up

No. CPU Cores

n=16
n=24

Linear Speedup

(b) Varying domain size with m = 1000

Figure 2: Relative speedup on Blue Gene/L for n = 24 variables and varying number of observations
m (a), and varying number of variables n and fixed number of observations m = 1000 (b).

nodes of an Infiniband AMD Opteron cluster (AMDO). Our focus is exclusively on performance
obtained by the parallel algorithm and the resulting ability to learn larger size networks fast. We
evaluated a gene regulatory network learning application on a synthetic experimental data generated
using the SynTReN package5 and our implementation of the MDL scoring criterion. We examine
scalability with respect to (i) varying number of observations m for a fixed number of variables
n = 24, and (ii) varying number of variables n for a fixed number of observations m = 1000, on
both platforms. Results are summarized in Tab. 1 and the corresponding relative speedup graphs for
BG/L is shown in Fig. 2. The number of observations required to derive a meaningful network grows
exponentially in the number of variables. Therefore the ability to compute for datasets with large
number of observations is important. We test our implementation on both platforms form = 200 and
m = 1000. The experimental results show that with increasing number of observations, execution
time increases linearly on BG/L and approximately linearly on AMDO, while maintaining linear
scalability (Fig. 2(a)). This indicates efficient communication as speedup is maintained even in
the cases of small number of observations, as computational complexity decreases with decreasing
number of observations while communication complexity remains unaffected. In the case of varying
number of variables we tested our implementation for n = 16 and n = 24 while fixing m = 1000.
The resulting run-times reflect the exponential complexity in the number of variables. As can be
expected, better speedup is observed for the larger dataset of n = 24 (Fig. 2(b)). Note that memory
requirements also grow exponentially in the numbed of variables, which indicates that going parallel
is advantageous from the perspective of both run-time and the ability to solve larger problems. Our
implementation was capable of learning a network of 33 variables in 1 hour and 14 minutes. Note
that Ott et al. reported that sequentially a network of 24 variables took multiple days (see footnote
3).

5T. Van den Bulcke, K. Van Leemput, B. Naudts, et al. SynTReN: a generator of synthetic gene expression
data for design and analysis of structure learning algorithms. BMC Bioinformatics, 7:43, 2006.

4

4 Conclusions

Heuristics-based BN learning methods trade off optimality for the ability to learn larger networks.
This work is intended to push the scale of BN structure learning without additional assumptions. In
this paper, we presented a parallel algorithm for exact structure learning that is work-optimal and
scalable, which achieves near linear speedup in practice.

5

