
PSMA: A Parallel Algorithm for Learning Regular
Languages

Hasan Ibne Akram1, Alban Batard2, Colin de la Higuera2, and Claudia Eckert1

1Technische Universität München, Munich, Germany,
{hasan.akram,claudia.eckert}@sec.in.tum.de

2 University of Nantes , Nantes, France, {batard,cdlh}@univ-nantes.fr

Abstract

Inferring a regular language from examples and counter-examples is a classical
problem in grammatical inference. It is also known as a variant of automata syn-
thesis or grammar induction problems and corresponds to finding the smallest DFA
consistent with a labelled sample of strings. The best known algorithm to solve
this problem runs in polynomial (but cubic) time, and for large learning samples
the algorithm cannot be used. We introduce a parallel version of the RPNI algo-
rithm which solves the above question, and we study the main challenges toward
parallelization of such class of algorithms to run in a multi-core environment. We
report experiments showing the viability of the technique.

1 Introduction
Inferring a regular language from examples and counter-examples is a classical problem in gram-
matical inference [1]. It is also known as automata synthesis or grammar induction and corresponds
to finding the smallest DFA consistent with a labelled sample of strings. The classical algorithm
(RPNI [2]) to solve this problem runs in polynomial (but cubic) time, and in practical situations
where the size of the learning sample is large the algorithm cannot be used. A number of alternative
algorithms have been proposed in the past 40 years [3, 4, 5]. In grammatical inference, the only
other attempt (to our knowledge) of parallelizing learning algorithms was made in the alternative
framework of active learning [6, 7].

Our Parallel State Merging Algorithm (PSMA) is a EREW PRAM learning algorithm for learning
DFA. This algorithm is strongly based on the sequential state merging algorithm RPNI [2] and adopts
a multi-core processor computation paradigm that allows to test possible state merges in parallel.

2 Preliminaries
Let Σ be a non-empty set of symbols called letters. Σ∗ is the set of all strings over the alphabet Σ
where a string x ∈ Σ∗ is a finite sequence of letters x = x1x2 · · ·xn. A language L is any subset
of Σ∗. If x = uv is a string, then u is a prefix of the string x.

The prefix set Pref(L) of the language L is defined as Pref(L) = {u ∈ Σ∗ : uv ∈ L}.
A Deterministic Finite Automaton (DFA) is a quintuple A = (Σ, Q, q0, F, δ) where Σ is an al-
phabet, Q is a set of finite states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states and
δ : Q× Σ→ Q is the transition function.

3 The problem
Let 〈S+, S−〉 be a finite sample of some language L consisting of a subset S+ ⊆ L, set of positive
strings of the language L and S− ⊆ Σ∗ \ L, set of negative strings of the language L. Throughout
the paper we assume the samples to be non-conflicting, i.e., S+ ∩ S− = ∅.

1



In a DFA learning (or synthesis) problem, we are given a sample 〈S+, S−〉 as above, and the goal
is to find the language L. Obviously, there is a number of languages are such that S+ ⊆ L and
S− ⊆ Σ∗ \ L: such a language is said to be consistent with 〈S+, S−〉. As a combinatorial problem,
the corresponding goal is to find the smallest consistent DFA. As an inference problem, we want to
have an algorithm which returns a DFA and furthermore the algorithm converges with the data, i.e.,
there is a guarantee that with more and more elements in S+ and S−, we can be sure to find L.

The general strategy used by the most common family of DFA learning algorithms is that of state
merging. The starting point is the Prefix Tree Acceptor (PTA), built from S+: this is a tree-like DFA
A = (Σ, Q, q0, F, δ) PTA(S+) defined as follows: {Q = qu : u ∈ Pref(S+)}, ∀ua ∈ Pref(S+) :
δ (qu, a) = qua, F = {qu : u ∈ S+}.
State-merging algorithms maintain a set of RED states corresponding to the confirmed states, i.e.,
those present in the final DFA, and a set of BLUE states, successors of the RED states and candidates
for merging. The goal is to generalise the language recognised by the running DFA by iteratively
choosing one RED state and one BLUE state and attempting to merge these together: if the result
of this merge is not over-general (i.e., no string from S− is recognised: the two states are then said
to be compatible and incompatible otherwise) the merge is kept; if not, it is rejected. Whenever a
particular BLUE state can be merged with no RED state it gets promoted: it becomes RED and all its
non RED successors become BLUE.

RPNI [2] is a deterministic algorithm where the merge compatibilities between two states are
checked sequentially in a predefined (length lexicographic) order. Whenever a merge is rejected,
RPNI tries to merge another pair of states and continues until no further merges are possible. It is
known that RPNI ensures identification of DFA in the limit and works in polynomial time [1].

4 The PSMA Algorithm
We introduce a new learning algorithm called PSMA (Parallel State Merging Algorithm) which
obtains the same result as RPNI but makes use of a multi processor architecture.

Let us denote by n the number of states of the PTA and suppose these are numbered (in a breadth-
first way) from 0 to n − 1. Pairs of (indexes of) states will be ordered: 〈i, j〉 < 〈i′, j′〉 if j < j′ or
j = j′ and i < i′. The first element of each pair corresponds to a RED state, the second to a BLUE
state. For example, 〈3, 5〉 < 〈2, 6〉 and 〈3, 5〉 < 〈4, 5〉.
The master processor node M takes the responsibility of initialising and updating the shared data:

• a setR of RED states; initiallyR = {0};
• a set B of BLUE states; initially B = {i : ∃a ∈ Σ such that δ(q0, a) = qi};
• a table containing for each pair 〈i, j〉 with i ∈ R, j ∈ B, the information T [i][j];
• a counter called SIT which corresponds to the position in the table up to which the merges

are validated by the master so far.

T can be implemented as a queue in order to have a small data struicture: it will only contain the
values corresponding to active pairs of states. T [i][j] will take the following possible values:

• if the merge between state i ∈ R and j ∈ B has an unknown status the value is U;
• if the merge is being considered in the actual context by some processor the value is C;
• if the merge is being considered by some processor, but the master has accepted a merge

the value is R;
• if the merge has been discarded the value is D;
• if the merge is proposed in the current context by one processor the value is P;
• if the merge is accepted and has been validated by the master processor, the value is A;

The master processor is in charge of updating the shared information. It does so by looking at the
entry in the table T corresponding to SIT= 〈i, j〉:

• if T [i][j] =D and is the last corresponding to that particular BLUE (j) the table is updated
by promoting state j. This consists in (1) updating the local B and R sets (i.e., state

2



j is moved from B to R, and successors of state j are moved to B; (2) pairs 〈j, k〉 are
inserted in their correct position in the table, where k is any BLUE state; (3) counter SIT is
incremented.

• if T [i][j] =P the following update takes place: (1) T [i][j]← A; (2) ∀k > j, T [i][k]← D;
(3) ∀〈h, k〉 >SIT, if T [h][k] =C, T [h][k] ←R and if T [h][k] =P, T [h][k] ←U; (4) B and
R are updated in the usual way RPNI does it; (5) SIT is incremented to < 〈i′, j′〉 where i′
is the first RED state and j′ is the next BLUE state.

Each other processor Pz plays the part of a slave processor. It finds the smallest 〈i, j〉, from SIT
onwards such that T [i][j] =U. Pz sets T [i][j] to C.

Then Pz runs RPNI with the help of the table T : every time a merge between two states r and
b is to be tested, Pz checks the table T . If T [r][b] is A the merge is done; in all other cases the
compatibility result is fail. When Pz has to test the merge between i and j, it really does it and
returns the compatibility result.

Processor Pz does the following when it has finished its task, consisting in testing the merge between
i and j:

1. If T [i][j]=C then if the merge Pz has tested is OK, it updates T [i][j] to P (proposed). If the
merge is not OK, it updates T [i][j] to D.

2. If T [i][j]=R (which means that at least one new merge has been taken into account), then
if the merge is not OK, it updates T [i][j] to D. If the merge is OK, nothing can be decided:
it updates T [i][j] to U.

3. It searches for another merge to be checked.

A small analysis of the algorithm

The key idea is that each slave processor is kept busy at all times: it finds the next job in the queue
and will try to check a merge in which the context is that all the previous unfinished jobs are going
to fail. If the result of this job is incompatible, then the result will hold even if an unfinished job
returns compatible. The bad case occurs when the job returns compatible: the result in only kept
if all previous compatibility tests fail.

5 Experimental Results
We have conducted our experiments on a multi-core machine having Intel R© Xeon R© processors,
4x6 cores, 2.66 GHz, 16 MB cache memory, RAM: 128 GB. A series of runs of the algorithm was
performed using datasets generated by Gowachin1, with different sizes of targets DFA, number of
examples, and number of slaves used in the algorithm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Number of slaves

E
xe

cu
tio

n
tim

e
in

se
co

nd
s nt = 250, ni = 34187, and S = 25000

nt = 200, ni = 30498, and S = 20000
nt = 150, ni = 38418, and S = 15000
nt = 100, ni = 20339, and S = 10000
nt = 75, ni = 12348, and S = 7500

Figure 1: Plot of time taken to execute different sizes of datasets over number of
slaves. nt is the number of nodes in the target DFA, ni is the number of
nodes in the initial PTA and S is the sample size.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

8

Number of slaves

Sp
ee

du
p

nt = 250, ni = 34187, and S = 25000
nt = 200, ni = 30498, and S = 20000
nt = 150, ni = 38418, and S = 15000
nt = 100, ni = 20339, and S = 10000
nt = 75, ni = 12348, and S = 7500

Figure 2: Plot of speedup gained over the number of processors. nt is the number
of nodes in the target DFA, ni is the number of nodes in the initial PTA
and S is the sample size.

1
Gowachin allows to generate artificial datasets for testing DFA learning methods: http://www.irisa.fr/Gowachin/

3



p → 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20
n ↓

12348 1 0.97 0.93 0.83 0.82 0.75 0.6 0.6 0.63 0.58 0.51 0.45 0.38 0.34 0.3
20339 1 0.8 0.9 0.63 0.74 0.68 0.75 0.63 0.53 0.59 0.51 0.43 0.38 0.34 0.3
38418 1 1.09 0.99 0.92 0.96 0.89 0.85 0.83 0.78 0.75 0.65 0.57 0.51 0.45 0.4
30498 1 1.13 0.99 1 0.88 0.82 0.83 0.75 0.73 0.67 0.6 0.53 0.46 0.42 0.38
34187 1 1.01 0.95 0.91 0.84 0.83 0.69 0.73 0.68 0.63 0.54 0.49 0.44 0.39 0.35

Table 1: Efficiency E as a function of n (PTA size) and p (number of processors).

From Figure 1 it appears that significant speedup can be gained when using large datasets (leading to
large PTA). As we increase the number of slaves, the speedup decreases until reaching a saturation
point (here with 13 slaves). This behaviour can be explained as follows: the hypothesis under which
a processor checks the merge it has to test has a probablity of being invalidated that grow with
the number of processors.Therefore, at some point, increasing the number of processors brings no
speedup.

Let the sequential execution time [8], i.e., the time taken to execute the algorithm with a single
processor be denoted by T1. The parallel execution time, i.e., the execution time for the algorithm
with p processors be denoted by Tp. The speedup is defined as S = T1

Tp
. The efficiency is defined as

E = S
p . Figure 2 depicts the speedup of the algorithm over the number of processors. Table 1 shows

the efficiency table as a function of number of states in the PTA and number of slaves. Efficiency
appears to be very high (Table 1) with lower number of slaves and decreases as the number of slaves
increases due to the similar reason as limitation in speedup gain explianed earlier. Adding more
resources to gain relatively small fraction of speedup (or no speedup) results in low efficeincy.

6 Conclusion & Future Outlook
In this paper we have described a parallel version of a state merging algorithm for inferring regular
languages (RPNI). Experimental results have been presented based on a Java implementation2 of
the algorithm, where a significant performance gain has been obtained. However, the results also
indicate that there is a limit for the speedup gain.

In this version, the algorithm remains deterministic and depends on a predefined ordering of the
states. A parallelisation of the Evidence Driven State Merging algorithm (EDSM, [4]) can also be
done3: in this case, between the different P values returned by the slave processors, the master will
choose the one with the highest score.

References
[1] de la Higuera, C.: Grammatical inference: learning automata and grammars. Cambridge Uni-

versity Press (2010)
[2] Oncina, J., Garcı́a, P.: Identifying regular languages in polynomial time. In Bunke, H., ed.:

Advances in Structural and Syntactic Pattern Recognition. Volume 5 of Series in Machine Per-
ception and Artificial Intelligence. World Scientific (1992) 99–108

[3] Trakhtenbrot, B., Barzdin, Y.: Finite Automata: Behavior and Synthesis. North Holland Pub.
Comp., Amsterdam (1973)

[4] Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo one DFA learning competi-
tion and a new evidence-driven state merging algorithm. In Honavar, V., Slutski, G., eds.: Gram-
matical Inference, Proceedings of ICGI ’98. Number 1433 in LNAI, Springer-Verlag (1998) 1–12

[5] Heule, M.J.H., Verwer, S.: Exact dfa identification using sat solvers. In Sempere, J.M., Garcı́a,
P., eds.: Grammatical Inference: Theoretical Results and Applications, 10th International Col-
loquium, ICGI 2010, Valencia, Spain, September 13-16, 2010. Proceedings. Volume 6339 of
Lecture Notes in Computer Science., Springer (2010) 66–79

[6] Balcázar, J.L., Diaz, J., Gavaldà, R., Watanabe, O.: An optimal parallel algorithm for learning
DFA. In: Proceedings of the 7th COLT, New York, ACM Press (1994) 208–217

[7] Angluin, D.: Learning regular sets from queries and counterexamples. Information and Control
39 (1987) 337–350

[8] Gupta, A., Kumar, V.: Performance properties of large scale parallel systems. J. Parallel Distrib.
Comput. 19(3) (1993) 234–244

2
http://pagesperso.lina.univ-nantes.fr/˜cdlh/Downloads/RPNI.tar.gz

3
http://pagesperso.lina.univ-nantes.fr/˜cdlh/Downloads/RPNIP.tar.gz

4


