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Motivation

• Bayesian inference in environmental models.
• Particle Markov chain Monte Carlo (PMCMC):

– state-space model,
– Metropolis-Hastings over p(Θ|y1:T ),
– use particle filter to estimate marginal likelihoods:∫ ∞

−∞
p(y1:T ,x1:T |θ) dx1:T

• Particle filters executed on GPU, but evaluations still take several
seconds, may require several minutes for larger models.
• Scale up to cluster level, one Markov chain per CPU-GPU pair.
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Quasi-ergodicity and multiple chains
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p(X) is the target distribution, consisting of two isolated modes;
(left) the starting distribution; (centre) typical posterior returned by
a single quasi-ergodic chain; (right) typical posterior returned by
multiple quasi-ergodic chains.
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Convergence and multiple chains

If some portion ρ of steps, 0 < ρ ≤ 1 and typically up to .5, must
be removed as burn-in from each chain, the maximum clock-time
speedup through parallelisation is limited to 1/ρ (Amdahl’s law).
Thus, a multiple-chain strategy must also reduce ρ as the number of
chains increases in order to scale well.
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Method

For each chain i, consider a proposal that mixes some local component
li(θ

′
i|θi) with a remote or global component Ri(θ

′
i):

qi(θ
′
i) := (1− α)li(θ

′
i|θi) + αRi(θ

′
i) ,

Ri(·) can be constructed via some contributed component rj(·) from
each chain j. Consider:

Ri(θ
′
i) ∝

C
max
j=1

rj(θ
′
i) .

Importantly,Ri(·) can be adapted asynchronously as new information
is received from other chains. Faults only deprive chains of timely
adaptation, they do not impact correctness.
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Early results
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Evolution of the R̂p statistic of Brooks & Gelman (1998) across steps
for each method, with (left to right) 2, 4, 8 and 16 chains. Lines
indicate mean across 20 runs, and shaded areas a half standard
deviation either side.
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