Distributed MAP Inference for Undirected Graphical Models

Sameer Singh¹ Amarnag Subramanya² Fernando Pereira² Andrew McCallum¹

¹University of Massachusetts, Amherst MA

²Google Research, Mountain View CA

Workshop on Learning on Cores, Clusters and Clouds (LCCC) Neural Information Processing Systems (NIPS) 2010

Motivation

- Graphical models are used in a number of information extraction tasks
- Recently, models are getting larger and denser
 - Coreference Resolution [CULOTTA ET AL. NAACL 2007]
 - Relation Extraction [Riedel et al. EMNLP 2010, POON & DOMINGOS EMNLP 2009]
 - Joint Inference [Finkel & Manning. NAACL 2009, Singh et al. ECML 2009]
- Inference is difficult, and approximations have been proposed
 - LP-Relaxations [MARTINS ET AL. EMNLP 2010]
 - Dual Decomposition [RUSH ET AL. EMNLP 2010]
 - MCMC-Based [McCallum et al. NIPS 2009, Poon et al. AAAI 2008]

Without parallelization, these approaches have restricted scalability

Contributions:

- 1 Distribute MAP Inference for a large, dense factor graph
 - 1 million variables, 250 machines
- 2 Incorporate sharding as variables in the model

Outline

1 Model and Inference

Graphical Models MAP Inference Distributed Inference

2 Cross-Document Coreference

Coreference Problem Pairwise Model Inference and Distribution

3 Hierarchical Models

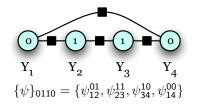
Sub-Entities Super-Entities

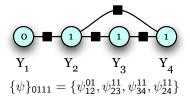
4 Large-Scale Experiments

Represent distribution over variables Y using factors ψ .

$$p(Y = y) \propto \exp \sum_{y_c \subseteq y} \psi_c(y_c)$$

Note: Set of factors is different of every assignment Y = y ({ ψ }_y)





We want to find the best configuration according to the model,

$$\hat{y} = rg\max_{y} p(Y = y)$$

= $rg\max_{y} \exp \sum_{y_c \subseteq y} \psi_c(y_c)$

Computational bottlenecks:

- **1** Space of *Y* is usually enormous (exponential)
- 2 Even evaluating $\sum_{y_c \subseteq y} \psi_c(y_c)$ for each y may be polynomial

¹MAP = maximum a posteriori

 Model and Inference
 Coreference
 Hierarchical Models
 Large-Scale Experiments
 Related Work
 Conclusions

 MCMC for MAP Inference

Initial Configuration $y = y_0$ for (num_samples):

Propose a change to y to get configuration y' (Usually a small change)

2 Acceptance probability: α(y, y') = min (1, (p(y')/p(y)))^{1/t}) (Only involve computations local to the change)
3 if Toss(α): Accept the change, y = y' return y

$$\frac{p(y')}{p(y)} = \exp\left\{\sum_{y'_c \subseteq y'} \psi_c(y'_c) - \sum_{y_c \subseteq y} \psi_c(y_c)\right\}$$

Sameer Singh (UMass, Amherst)

Model and Inference Coreference Hierarchical Models Large-Scale Experiments Related Work Conclusions 00000 00000 00000 00000 00000 Related Work Conclusions

Mutually Exclusive Proposals

Let $\{\psi\}_y^{y'}$ be the set of factors used to evaluate a proposal $y \to y'$

i.e.
$$\{\psi\}_{y}^{y'} = (\{\psi\}_{y} \cup \{\psi\}_{y'}) - (\{\psi\}_{y} \cap \{\psi\}_{y'})$$

Consider two proposals $y \rightarrow y_a$ and $y \rightarrow y_b$ such that,

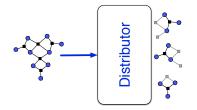
$$\{\psi\}_{y}^{y_{a}} \cap \{\psi\}_{y}^{y_{b}} = \{\}$$

Completely different set of factors are required to evaluate these proposals.

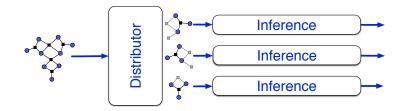
These two proposals can be evaluated (and accepted) in parallel.

Sameer Singh (UMass, Amherst)

Model and Inference ○○○○●	Coreference	Hierarchical Models	Large-Scale Experiments	Related Work	Conclusions
Distributed	Inferen	ce			

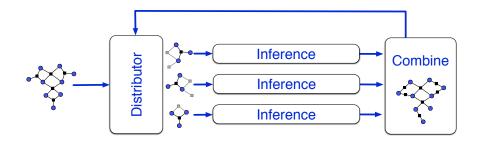


Model and Inference ○○○○●	Coreference	Hierarchical Models	Large-Scale Experiments	Related Work	Conclusions
Distributed	Inferen	ce			



Sameer Singh (UMass, Amherst)

Distributed Inference



Sameer Singh (UMass, Amherst)

Distributed MAP Inference

LCCC, NIPS 2010 Workshop 6 / 19

Outline

1 Model and Inference

Graphical Models MAP Inference Distributed Inference

2 Cross-Document Coreference

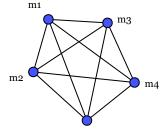
Coreference Problem Pairwise Model Inference and Distribution

3 Hierarchical Models

Sub-Entities Super-Entities

4 Large-Scale Experiments

Model and Inference	Coreference ●○○○○	Hierarchical Models	Large-Scale Experiments	Related Work	Conclusions
Input Features					



Define similarity between mentions, $\phi:\mathcal{M}^2\to\mathcal{R}$

- $\phi(m_i, m_j) > 0$: m_i, m_j are similar
- $\phi(m_i, m_j) < 0$: m_i, m_j are dissimilar

We use cosine similarity of the context bag of words:

$$\phi(m_i, m_j) = cosSim(\{c\}_i, \{c\}_j) - b$$

Sameer Singh (UMass, Amherst)

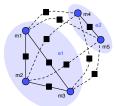
Model and Inference Coreference Hierarchical Models Large-Scale Experiments Related Work Conclusions 00000 0000

Graphical Model

The random variables in our model are entities (E) and mentions (M)For any assignment to these entities (E = e), we define the model score:

$$p(E = e) \propto \exp\left\{\sum_{m_i \sim m_j} \psi_a(m_i, m_j) + \sum_{m_i \sim m_j} \psi_r(m_i, m_j)\right\}$$

where $\psi_a(m_i, m_j) = w_a \phi(m_i, m_j)$, and
 $\psi_r(m_i, m_j) = -w_r \phi(m_i, m_j)$



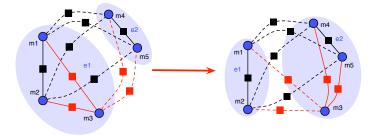
For the following configuration, $p(e_1, e_2) \propto \exp \left\{ \begin{array}{c} w_a (\phi_{12} + \phi_{13} + \phi_{23} + \phi_{45}) \\ - w_r (\phi_{15} + \phi_{25} + \phi_{35} \\ + \phi_{14} + \phi_{24} + \phi_{34}) \right\}$

1 Space of *E* is Bell Number(*n*) in number of mentions **2** Evaluating model score for each E = e is $O(n^2)$

Sameer Singh (UMass, Amherst)

00000	0000	0000				
NCNC for NAD Informed						

MCMC for MAP Inference



 $p(e) \propto \exp\{w_a (\phi_{12} + \phi_{13} + \phi_{23} + \phi_{45}) \\ -w_r (\phi_{15} + \phi_{25} + \phi_{35} + \phi_{14} + \phi_{24} + \phi_{34})\}$ $p(e) \propto \exp\{w_a (\phi_{12} + \phi_{34} + \phi_{35} + \phi_{45}) \\ -w_r (\phi_{15} + \phi_{25} + \phi_{13} + \phi_{14} + \phi_{24} + \phi_{23}) \}$

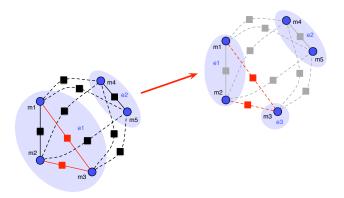
$$\log \frac{p(\acute{e})}{p(e)} = w_a (\phi_{34} + \phi_{35} - \phi_{13} - \phi_{23}) - w_r (\phi_{13} + \phi_{23} - \phi_{34} - \phi_{35})$$

Sameer Singh (UMass, Amherst)

 Model and Inference
 Coreference
 Hierarchical Models
 Large-Scale Experiments
 Related Work
 Conclusions

 0000
 000
 000
 000
 000
 000
 000
 000

Mutually Exclusive Proposals



Sameer Singh (UMass, Amherst)

Model and Inference	Coreference ○○○●○	Hierarchical Models	Large-Scale Experiments	Related Work	Conclusions
Mutually E	xclusive	Proposals			



Sameer Singh (UMass, Amherst)

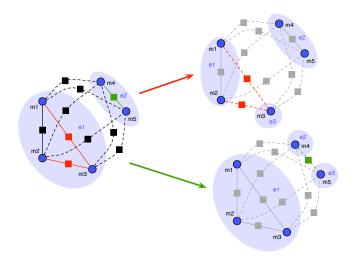
Distributed MAP Inference

LCCC, NIPS 2010 Workshop 10 / 19

 Model and Inference
 Coreference
 Hierarchical Models
 Large-Scale Experiments
 Related Work
 Conclusions

 0000
 000
 000
 000
 000
 000
 000
 000

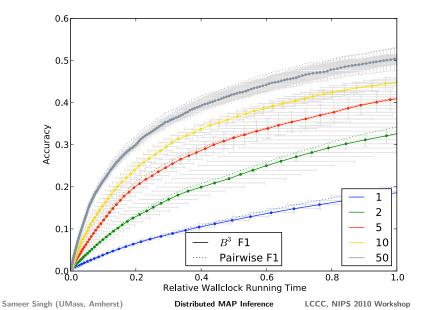
Mutually Exclusive Proposals



Sameer Singh (UMass, Amherst)

Model and Inference	Coreference ○○○●	Hierarchical Models	Large-Scale Experiments	Related Work	Conclusions

Results



11 / 19

Outline

1 Model and Inference

Graphical Models MAP Inference Distributed Inference

2 Cross-Document Coreference

Coreference Problem Pairwise Model Inference and Distribution

3 Hierarchical Models

Sub-Entities Super-Entities

4 Large-Scale Experiments

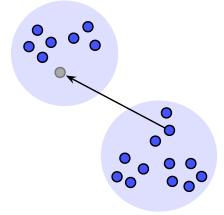
Model and	Inference
00000	

Coreference

Hierarchical Models ●○○○ Large-Scale Experiments

Related Work Conclusions

Sub-Entities



• Consider an accepted move for a mention

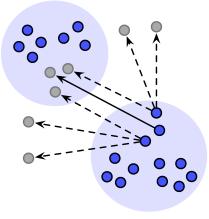
Model and Inference

Coreference

Hierarchical Models ●○○○ Large-Scale Experiments

Related Work Conclusions

Sub-Entities



- Ideally, *similar* mentions should also move to the same entity
- Default proposal function does not utilize this
- *Good* proposals become more rare with larger datasets

Model and Inference

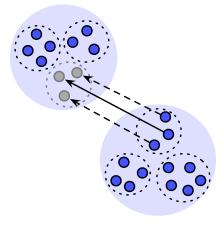
Coreference

Hierarchical Models

Large-Scale Experiments

Related Work Conclusions

Sub-Entities



- Include Sub-Entity variables
- Model score is used to sample sub-entity variables
- Propose moves of mentions in a sub-entity simultaneously

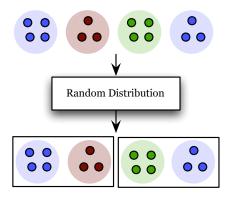
Model	and	Inference
00000)	

Coreference

Hierarchical Models ○●○○ Large-Scale Experiments

Related Work Conclusions

Super-Entities

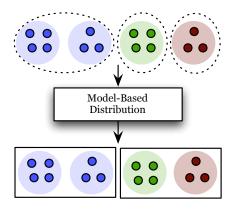


- Random distribution may not assign *similar* entities to the same machine
- Probability that similar entities will be assigned to the same machine is small

Sameer Singh (UMass, Amherst)

Model and Inference	Coreference	Hierarchical Models	Large-Scale Experiments	Related Work
00000	00000	0000		

Super-Entities

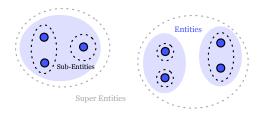


- Augment model with Super-Entities variables
- Entities in the same super-entity are assigned the same machine

Conclusions

• Model score is used to sample super-entity variables

Model and Inference	Coreference	Hierarchical Models ○○●○	Large-Scale Experiments	Related Work	Conclusions		
Hierarchical Representation							



• Factors

	mentions		sub-entities
• Affinity factors between	sub-entities	in the same	entities
	entities		super-entities

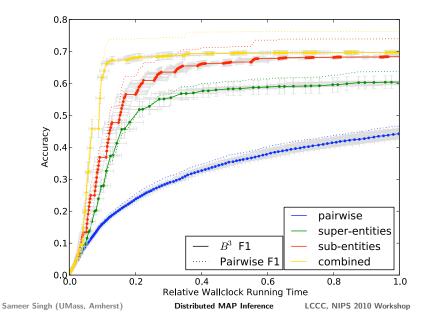
- Repulsion factors are similarly symmetric across levels
- Sampling: Fix variables of two levels, sample the remaining level

Sameer Singh (UMass, Amherst)

Distributed MAP Inference LCCC, NIPS 2010 Workshop

Model and Inference	Coreference	Hierarchical Models	Large-Scale Experiments	Relat
00000	00000	0000		

Evaluation



Outline

1 Model and Inference

Graphical Models MAP Inference Distributed Inference

2 Cross-Document Coreference

Coreference Problem Pairwise Model Inference and Distribution

3 Hierarchical Models

Sub-Entities Super-Entities

4 Large-Scale Experiments

Model and Inference	Coreference	Hierarchical Models	Large-Scale Experiments	Related Work	Conclusions		
Preliminary Large-Scale Experiments							

Data

- New York Times Annotated Corpus [SANDHOUS LDC 2008] 20 years of articles (1987-2007)
- prune rare names (<1000): \sim 1 million person name mentions

Evaluation

- Automated labels are too noisy for evaluation
- Instead, we estimate the speed of inference
 - trust the model to accept good proposals
 - observe the number of predicted entities

Model and Inference

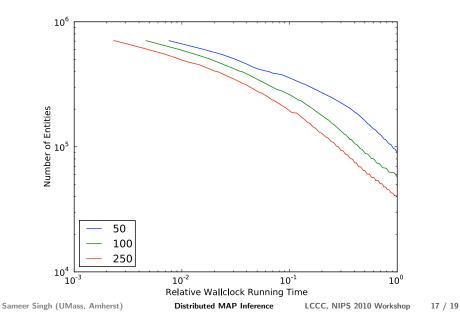
Coreference

Hierarchical Models

Large-Scale Experiments

Related Work Conclusions

Speed of Inference



Model and Inference	Coreference	Hierarchical Models	Large-Scale Experiments	Related Work	Conclusions		
Polated Work							

• GraphLab [LOW ET AL. UAI 2010]

- how do we represent dynamic graphs
- how do we represent hierarchical models
- Graph Splashing [GONZALEZ ET AL. UAI 2009]
 - graph structure changes with every configuration
 - BP messages are enormous for exponential-domain variables
- Topic Models [Smola & Narayanmurthy. VLDB 2010, Asuncion et al. NIPS 2009]
 - restrictions since they are calculating probabilities
 - we allow non-random distribution and customized proposals

Model and Inference	Coreference	Hierarchical Models	Large-Scale Experiments	Related Work	Conclusions			
Conclusions								

- **1** propose distributed inference for graphical models
- 2 enable distributed cross-document coreference
- **3** improve sharding with latent hierarchical variables
- 4 demonstrate utility on large datasets

Future Work:

- more scalability experiments
- study mixing and convergence properties
- add more expressive factors
- supervision: labeled data, noisy evidences

Thanks!

Sameer Singh sameer@cs.umass.edu

Fernando Pereira pereira@google.com

Amarnag Subramanya asubram@google.com

Andrew McCallum mccallum@cs.umass.edu

