Averaging algorithms and distributed optimization

John N. Tsitsiklis MIT

NIPS 2010 Workshop on Learning on Cores, Clusters and Clouds December 2010

Outline

- Motivation and applications
- Consensus/averaging in distributed optimization
- Convergence times of consensus/averaging
 - time-invariant case
 - time-varying case

The Setting

- *n* agents
 - starting values $x_i(0)$
- reach consensus on some x^* , with either:
 - $\min_{i} x_{i}(0) \le x^{*} \le \max_{i} x_{i}(0) \quad (\text{consensus})$ $x^{*} = \frac{x_{1}(0) + \dots + x_{n}(0)}{n} \quad (\text{averaging})$

- averaging when $x_i \in \{-1, +1\}$ (voting)

- interested in:
 - genuinely distributed algorithm
 - no synchronization
 - no "infrastructure" such as spanning trees

• simple updates, such as:
$$x_i := \frac{x_i + x_j}{2}$$

Social sciences

- Merging of "expert" opinions
- Evolution of public opinion
- Evolution of reputation
- Modeling of jurors
- Language evolution
- Preference for "simple" models
 - behavior described by "rules of thumb"
 - less complex than Bayesian updating
- interested in modeling, analysis (descriptive theory)
 - ... and narratives

Engineering

- Distributed computation and sensor networks
 - Fusion of individual estimates
 - Distributed Kalman filtering
 - Distributed optimization
 - Distributed reinforcement learning
- Networking
 - Load balancing and resource allocation
 - Clock synchronization
 - Reputation management in ad hoc networks
 - Network monitoring
- Multiagent coordination and control
 - Coverage control
 - Monitoring
 - Creating virtual coordinates for geographic routing
 - Decentralized task assignment
 - Flocking

The DeGroot opinion pooling model (1974)

$$x_i(t+1) = \sum_j a_{ij} x_j(t) \qquad a_{ij} \ge 0, \quad \sum_j a_{ij} = 1$$

x(t+1) = Ax(t)

- A: stochastic matrix
- Markov chain theory + "mixing conditions"

 \longrightarrow convergence of A^t , to matrix with equal rows

- \longrightarrow convergence of x_i to $\sum_j \pi_j x_j$
- \longrightarrow convergence rate estimates
- Averaging algorithms
 - A doubly stochastic: $\mathbf{1}' A x = \mathbf{1}' x$, where $\mathbf{1}' = [1 \ 1 \ \dots \ 1]$
 - $x_1 + \cdots + x_n$ is conserved

- convergence to
$$x^* = \frac{x_1(0) + \dots + x_n(0)}{x_n(0)}$$

d

Part I: Distributed Optimization

Gradient-like methods

- $\min_{x} f(x)$ special case: $f(x) = \sum_{i} f_{i}(x)$
 - f, f_i convex
- f smooth; work with $\nabla f(x)$
 - update: $x := x \gamma \nabla f(x)$
 - with noise: $x := x \gamma(\nabla f(x) + w)$ (stochastic approximation, $\gamma_t \to 0$)
 - f nonsmooth, work with subgradient $\partial f(x)$
 - update: $x := x \gamma \partial f(x)$ $(\gamma_t \to 0)$
 - with noise: $x := x \gamma(\partial f(x) + w)$
 - More sophisticated variants: Dual averaging methods

Smooth *f*; **compentwise** decentralization

• x_j^i : agent *i*, component *j*

- update:
$$x_i^i := x_i^i - \gamma \frac{\partial f}{\partial x_i}(x^i)$$

- reconcile: $x_j^i := x_j^j$ (occasionally; upper bound B)

• Analysis: track $y = (x_1^1, \dots, x_n^n)$

 $\|y-x^i\|=O(B\gamma)$

$$y := y - \gamma \nabla f(y) + O(B\gamma^2)$$

- Convergence theorem for centralized gradient method remains valid: [Bertsekas, JNT, Athans, 86]
 - need $\gamma \sim 1/B$
 - also for stochastic approximation variant

$$x_i^i := x_i^i - \gamma \left(\frac{\partial f}{\partial x_i} (x^i) + w_i \right)$$

Smooth *f*; overlap and cooperate

- Assume (for simplicity) scalar x
 - subscript denotes agent's value of x
 - $x_i := x_i \gamma f(x_i)$ redundant/useless

- useful in the presence of noise:
 - update: $x_i := x_i \gamma \left(\nabla f(x_i) + w_i \right)$
 - reconcile: $x := x \gamma \cdot \frac{1}{n} \sum_{i} (\nabla f(x_i) + w_i)$

Smooth f; overlap and cooperate (ctd.)

• Two-phase version

- update: $x_i := x_i \gamma \left(\nabla f(x_i) + w_i \right)$
- reconcile: run consensus algorithm x := Ax

converges:
$$x_i o y$$
, $\forall i$ $y = \sum_j \pi_j x_j$ $\pi_j \ge 0$
 $y := y - \gamma \sum_j \pi_j (\nabla f(x_j) + w_j)$

- expected update direction is still descent direction
- classical convergence results for centralized stochastic gradient method, with $\gamma_t \rightarrow 0$, remain valid

Smooth f; overlap and cooperate (ctd.)

Interleaved version

$$x_i := \sum_j a_{ij} x_j - \gamma \left(\nabla f(x_i) + w_i \right)$$

- define
$$y = \sum_{i} \pi_i x_i$$

- note:
$$\sum_{i} \pi_{i} \sum_{j} a_{ij} x_{j} = \sum_{i} \pi_{i} x_{i}$$
$$y := y - \gamma \sum_{i} \pi_{i} (\nabla f(x_{i}) + w_{i})$$

- $|x_i y| = O(\gamma T \cdot |\nabla f(y)|)$
 - T: convergence time (time constant) of consensus algorithm

$$y := y - \gamma \sum_{i} \pi_i (\nabla f(y) + w_j) + O(\gamma^2 T \cdot |\nabla f(y)|)$$

• convergence theorem for centralized stochastic gradient method, with $\gamma_t \rightarrow 0$, remains valid [Bertsekas, JNT, Athans, 86]

Smooth, additive f; overlap and cooperate

- $f(x) = \frac{1}{n} \sum_{i} f_i(x)$ optimality $\iff \sum_{i} \nabla f_i(x) = 0$
- Two-phase version
 - update: $x_i := x_i \gamma \nabla f_i(x_i)$
 - reconcile: run consensus algorithm x := Ax

converges: $x_i \to y$, $\forall i$ $y = \sum_i \pi_i x_i$ $\pi_i \ge 0$ $y := y - \gamma \sum_i \pi_i \nabla f_i(x_i)$

- correctness requires $\pi_i = 1/n$
 - Use averaging algorithm (A: doubly stochastic)

Additive *f*; overlap and cooperate (ctd.)

Interleaved version

$$x_i := \sum_j a_{ij} x_j - \gamma \nabla f_i(x_i) + w_i$$

- define
$$y = \frac{1}{n} \sum_{i} x_i$$

 $y := y - \gamma \frac{1}{n} \sum_{i} \nabla f_i(x_i)$

- $|x_i y| = O(\gamma T \cdot \sum_i |\nabla f_i(y)|)$
 - T: convergence time (time constant) of averaging algorithm
 - for constant γ , error does not vanish at optimum
 - optimality possible only with $\gamma_t \rightarrow 0$ (even in the absence of noise)
 - hence studied for nonsmooth f or stochastic case [Nedic & Ozdaglar, 09; Duchi, Agarwal, & Wainright, 10]

Convergence times — the big picture

- $T_{con}(n,\epsilon)$: time for consensus/averaging algorithm to reduce disagreement from unity to ϵ
 - generically $O(1/\log(1/\epsilon))$
 - focus on $T_{con}(n)$
- $T_{opt}(n,\epsilon)$: time for centralized (sub)gradient algorithm to bring cost gap to ϵ
 - hide dependence on other constants
 (bounds on first, second derivatives, stepsize details)
- Two-phase version: $O(T_{con}(n) \cdot T_{opt}(n, \epsilon))$
- Interleaved version: Results have the same flavor
 [Nedic & Ozdaglar, 09; Duchi, Agarwal, & Wainright, 10]
 — is interleaving faster or "better" than two-phase version?
- Our mission: study and reduce T_{con}(n) automatically better overall convergence time e.g., [Nedic, Olshevsky, Ozdaglar & JNT, 08]

Part II: Consensus and averaging

Convergence time of consensus algorithms

 x_i

Averaging algorithms

- A doubly stochastic: $\mathbf{1}' A x = \mathbf{1}' x$
 - positive diagonal
 - nonzero entries are $\geq \alpha > 0$
 - convergence to $x^* = \frac{x_1(0) + \dots + x_n(0)}{n}$
 - convergence time = $O(n^2/\alpha)$
 - $V(x) = \sum_{i} (x_i x^*)^2$ is a Lyapunov function (Nedic, Olshevsky, Ozdaglar & JNT, 09)
- bidirectional graph, natural algorithm:

$$x_i := x_i + rac{1}{2n} \sum_{\text{neighbors } j} (x_j - x_i)$$

 $lpha \sim rac{1}{n}$ convergence time = $O(n^3)$

A critique

- The consensus/averaging algorithm x := Axassumes constant $a_{ij} \implies fixed graph$
 - elect a leader, form a spanning tree, accumulate on tree
- Want simplicity and robustness in dealing with changing topologies, failures, etc.

Time-Varying/Chaotic Environments

- i.i.d. random graphs: same (in expectation) as fixed graphs; convergence rate ↔ "mixing times" (Boyd et al., 2005)
- Fairly arbitrary sequence of graphs/matrices A(t): worst-case analysis

$$x_i(t+1) = \sum_j \frac{a_{ij}(t)}{x_j(t)} x_j(t)$$

 $a_{ij}(t)$: nonzero whenever *i* receives message from *j*

x(t+1) = A(t)x(t) (inhomogeneous Markov chain)

Consensus convergence

$$x_i(t+1) = \sum_j a_{ij}(t) x_j(t)$$

- $a_{ii}(t) > 0;$ $a_{ij}(t) > 0 \implies a_{ij}(t) \ge \alpha > 0$
- "strong connectivity in bounded time": over B time steps "communication graph" is strongly connected
- Convergence to consensus: $\forall i: x_i(t) \rightarrow x^* = \text{convex combination of initial values}$ (JNT, Bertsekas, Athans, 86; Jadbabaie et al., 03)
- "convergence time": exponential in n and B
 - even with:
 symmetric graph at each time
 equal weight to each neighbor
 (Cao, Spielman, Morse, 05)

Averaging in Time-Varying Setting

- x(t+1) = A(t)x(t) (Nedic, Olshevsky, Ozdaglar & JNT, 09)
 - A(t) doubly stochastic, for all t
 - $O(n^2/\alpha)$ bound remains valid!
- Improved convergence rate
 - exchange "load" with up to two neighbors at a time
 - can use $\alpha = O(1)$
 - convergence time: $O(n^2)$
- Averaging in time-varying bidirectional graphs: no harder than consensus on fixed graphs
- Various convergence proofs of optimization algs. remain valid
 - Improves the convergence time estimate for subgradient methods [Nedic, Olshevsky, Ozdaglar, JNT, 09]

 $O(n^2)$

Can we beat $O(n^2)$?

- The program: Understand the question for static graphs
- Yes, for special static graphs
- No, in general, if we restrict to (possibly nonlinear) update functions

 $x_i := f(x_j; j \in \text{neighbors of } i)$

that are smooth [Olshevsky & JNT, 10]

- Nonlinearity cannot help
- Playing with the coefficients of random walks on a line does not help
- Yes, if we allow building a spanning tree
- We want to rule this out by picking a precise model of computation

A model of computation; static graphs

- To have a hope for strong lower bounds, rule out fancy encoding of information in real numbers
 - work with discrete messages
 - can only solve discrete problems
- The majority problem

- $x_i \in \{-1, 1\}$; Is the average > 0?

• Model:

- Fixed but unknown bidirectional graph
- No randomization
- Anonymous nodes, all running same code
- Bounded message alphabet

Majority problem under our model

- Is $O(n^2)$ possible, in the first place?
- Yes! (nontrivial) (Hendrickx, Olshevsky & JNT, 10)
- Idea: move -1s and +1s around
 - cancel them when they meet
 - see what is left
- Open questions
 - Can we get a $\Omega(n^2)$ lower bound? (may be hard)
 - Can we get $O(n^2)$ on directed static graphs?
 - Can we get $O(n^2)$ method for time-varying graphs? (under what connectivity assumptions?)

Thank you!