Averaging algorithms and distributed
optimization

John N. Tsitsiklis
MIT

NIPS 2010 Workshop on Learning
on Cores, Clusters and Clouds
December 2010

Outline

e Motivation and applications

e Consensus/averaging in distributed optimization

e Convergence times of consensus/averaging

— time-invariant case

— time-varying case

The Setting

e 1 agents

— starting values z;(0)

e reach consensus on some z*, with either:

— min; 2;(0) < z* < max; z;(0) (consensus)

— gzt = 21(0) + - + 2n(0) (averaging)
n

— averaging when z;, € {—1,4+1} (voting)

e interested in:
— genuinely distributed algorithm
— no synchronization

— no ‘“infrastructure” such as spanning trees

e simple updates, such as: z; = 5

Social sciences

Merging of “expert” opinions
Evolution of public opinion
Evolution of reputation
Modeling of jurors

Language evolution

Preference for “simple” models
— behavior described by *‘rules of thumb”

— less complex than Bayesian updating

interested in modeling, analysis (descriptive theory)

— ... and narratives

Engineering

Fusion of individual estimates
Distributed Kalman filtering
Distributed optimization
Distributed reinforcement learning

Load balancing and resource allocation
Clock synchronization

Reputation management in ad hoc networks
Network monitoring

Coverage control

Monitoring

Creating virtual coordinates for geographic routing
Decentralized task assignment

Flocking

The DeGroot opinion pooling model

it + 1) =D a4 z;(t) a;j >0, Yja;=1
J

x(t+1) = Az(t) A: stochastic matrix

e Markov chain theory 4+ “mixing conditions”
— convergence of A!, to matrix with equal rows
— convergence of x; to >, mx;

—— convergence rate estimates

e Averaging algorithms

— A doubly stochastic: 1’Az =12z, wherel’ =11 ...

— x1+ .-+ xn is conserved
21(0) + - + zn(0)

n

— convergence to z* =

1]

Part I. Distributed Optimization

Gradient-like methods

o min f(z) special case: f(z) =) fi(z)

— f, f; convex

e [smooth; work with V[(x)
— update: x . =x—vVf(x)

— with noise: z =z —~v(Vf(z) 4+ w)
(stochastic approximation, v+ — 0)

e f nonsmooth, work with subgradient 9f(x)
— update: x .= x — v0f(x) (v — 0)
— with noise: x:=z—~v0f(z) + w)

e More sophisticated variants: Dual averaging methods

Smooth f; compentwise decentralization

7.

° z: agent ¢, component j
. . o .
— update: x; = — v / (z")
891:@-
— reconcile: :U; = :E; (occasionally; upper bound B)
e Analysis: track y = (x71,...,20)

ly — 2| = O(B~)

y =y — vV f(y) + O(Bv?)

e Convergence theorem for centralized gradient method remains
valid: [Bertsekas, JNT, Athans, 86]

— need y~1/B

also for stochastic approximation variant

o= a1 (1) + i)

Smooth f; overlap and cooperate

e Assume (for simplicity) scalar x
— subscript denotes agent’s value of x

— x; ;= x; —vf(x;) redundant/useless

e useful in the presence of noise:
— update: =; i=z; — v (Vf(x;) +w;)

— reconcile: z =2 —~- %Z(Vf(xi) + w;)

\

A

Smooth f; overlap and cooperate (ctd.)

e T wo-phase version
— update: z; =z, — v (Vf(x;) + w;)

— reconcile: run consensus algorithm » := Ax

converges: x; — vy, Vi Yy = ij:cj 7 =2 0
J

y =y =7 m(VI(z;) +w;)
J

e expected update direction is still descent direction

e classical convergence results for centralized stochastic
gradient method, with + — 0, remain valid

Smooth f; overlap and cooperate (ctd.)

e Interleaved version

z; =Y ajx; — v (V) + w;)
J

— define y = sz’xi

(/

— note: ZTFZZCLZ]CU] = Zﬂ'z’aji
J {

yi=y—7 2 m(V(2:) 4+ w)
o [z, —y[=0NT-|Vf(y)l)
T: convergence time (time constant) of consensus algorithm
Yy =y — Zm(vf(y) + w;) + O(v*T - |V F(»)|)

e convergence theorem for centralized stochastic gradient method,
with v+ — 0O, remains valid [Bertsekas, JNT, Athans, 86]

Smooth, additive f; overlap and cooperate

o f(x)= %Zfi(x) optimality <= vai(x) =0

e Two-phase version
— update: z; ;= x; — vV fi(x;)

— reconcile: run consensus algorithm » = Ax

converges: x; — v, Vi y =) maz; m; >0
i

Yy =y VZM V fi(z;)

e correctness requires m; = 1/n

— Use averaging algorithm (A: doubly stochastic)

Additive f; overlap and cooperate (ctd.)

e Interleaved version

z; = ajz; —vVfi(z) +w;
i

1
— define y = —ZZCZ'
n <
1
1
yi=y =72 Vi)
)

o |z;—yl=0(T = |VHE®))
T:. convergence time (time constant) of averaging algorithm
— for constant ~, error does not vanish at optimum
— optimality possible only with v — O
(even in the absence of noise)

— hence studied for nonsmooth f or stochastic case
[Nedic & Ozdaglar, 09; Duchi, Agarwal, & Wainright, 10]

Convergence times — the big picture

Tcon(n,e): time for consensus/averaging algorithm
to reduce disagreement from unity to ¢

— generically O(1/1og(1/¢))
— focus on Tcon(n)

Topt(n,€): time for centralized (sub)gradient algorithm
to bring cost gap to e

— hide dependence on other constants
(bounds on first, second derivatives, stepsize details)

Two-phase version: O(Tcon(n) - Topt(n, e))

Interleaved version: Results have the same flavor

— is interleaving faster or “better” than two-phase version?

Our mission: study and reduce Tcon(n)
automatically better overall convergence time
e.g.,

Part II: Consensus and averaging

Convergence time of consensus algorithims

CCZ'(t —|— 1) — Zaw xj(t) Ay g Z O, Z] A5 — 1
J

x(t+1) = Azx(2t) A: stochastic matrix

Convergence time (time to get close to ‘“steady-state”)
Equal weight to all neighbors
Directed graphs: exponential(n) Undirected graphs: O(n3), tight

Proosi>

©(n?) for line graphs

AN

Better results for special graphs
(Erdos-Rényi, geometric, small world)

Averadging algorithms

e A doubly stochastic: 1"Ax =1z
— positive diagonal
— nonzero entries are > a >0

— convergence to z* = *”31(0)+'7;+93n(0)

— convergence time = O(n?/a)
V(z) =) (z; — +*)? is a Lyapunov function

1
(Nedic, Olshevsky, Ozdaglar & JNT, 09)
e Dbidirectional graph, natural algorithm:

1

2n neighbors j

o~ = convergence time = O(n>)

A critique

The consensus/averaging algorithm z := Ax
assumes constant a;; —— fixed graph

— elect a leader, form a spanning tree, accumulate on tree

Want simplicity and robustness in dealing with
changing topologies, failures, etc.

Time-Varying/Chaotic Environments

i.i.d. random graphs: same (in expectation) as fixed graphs;
convergence rate «—— ‘“mixing times”

Fairly arbitrary sequence of graphs/matrices A(t):
worst-case analysis

pi(t4+1) =3 a;;(D)z; () T
; J J /

a;;(t): nonzero whenever i receives message from j

x(t+1) = A(t)x(t) (inhomogeneous Markov chain)

consensus convergence

zi(t+1) = 3 ai;(t)z;(t)
J

a;;(t) > 0; aij(t) >0 = aij(t) >a>0

“strong connectivity in bounded time’ :
over B time steps “communication graph”
is strongly connected

Convergence to consensus:
Vi: z;(t) — 2™ =convex combination of initial values

“‘convergence time"”: exponential in n and B

— even with:
symmetric graph at each time
equal weight to each neighbor

Averaging in Time-Varying Setting

o z(t+1)=A()z(t) (Nedic, Olshevsky, Ozdaglar & JNT, 09)
— A(t) doubly stochastic, for all ¢

— O(n?/a) bound remains valid!

e Improved convergence rate
— exchange “load” with up to two neighbors at a time
— can use a = 0(1)

— convergence time: O(n?)

e Averaging in time-varying|bidirectional|graphs: O 2
no harder than consensus on fixed graphs (n)

e \Various convergence proofs of optimization algs. remain valid
— Improves the convergence time estimate for subgradient
methods [Nedic, Olshevsky, Ozdaglar, JNT, 09]

Can we beat O(n?)?

e T he program: Understand the question for static graphs

e Yes, for special static graphs

e NoO, in general, if we restrict to (possibly nonlinear) update
functions

r; .= f(x;, j € neighbors of i)
that are smooth
— Nonlinearity cannot help

— Playing with the coefficients of random walks on a line
does not help

e Yes, if we allow building a spanning tree

e \We want to rule this out by picking a precise model
of computation

A model of computation; static graphs

e ToO have a hope for strong lower bounds,
rule out fancy encoding of information in real numbers

— work with discrete messages

— can only solve discrete problems

e T he majority problem

— x;,€{—1,1}; Is the average > 07

e Model:
— Fixed but unknown bidirectional graph
— No randomization
— Anonymous nodes, all running same code

— Bounded message alphabet

Majority problem under our model

e Is O(n?) possible, in the first place?

e Yes! (nontrivial)

e Idea: move —1s and +1s around
— cancel them when they meet

— see what is left

e Open questions
— Can we get a 2(n?) lower bound? (may be hard)
— Can we get O(n?) on directed static graphs?

— Can we get O(n?) method for time-varying graphs?
(under what connectivity assumptions?)

%@ﬂé /

