Averaging algorithms and distributed optimization

John N. Tsitsiklis
MIT

NIPS 2010 Workshop on Learning
on Cores, Clusters and Clouds
December 2010

Outline

- Motivation and applications
- Consensus/averaging in distributed optimization
- Convergence times of consensus/averaging
- time-invariant case
- time-varying case

The Setting

- n agents
- starting values $x_{i}(0)$
- reach consensus on some x^{*}, with either:
- $\min _{i} x_{i}(0) \leq x^{*} \leq \max _{i} x_{i}(0) \quad$ (consensus)
$-x^{*}=\frac{x_{1}(0)+\cdots+x_{n}(0)}{n} \quad$ (averaging)
- averaging when $x_{i} \in\{-1,+1\} \quad$ (voting)
- interested in:
- genuinely distributed algorithm
- no synchronization
- no "infrastructure" such as spanning trees
- simple updates, such as: $x_{i}:=\frac{x_{i}+x_{j}}{2}$

Social sciences

- Merging of "expert" opinions
- Evolution of public opinion
- Evolution of reputation
- Modeling of jurors
- Language evolution
- Preference for "simple" models
- behavior described by "rules of thumb"
- less complex than Bayesian updating
- interested in modeling, analysis (descriptive theory)
- ... and narratives

Engineering

- Distributed computation and sensor networks
- Fusion of individual estimates
- Distributed Kalman filtering
- Distributed optimization
- Distributed reinforcement learning
- Networking
- Load balancing and resource allocation
- Clock synchronization
- Reputation management in ad hoc networks
- Network monitoring
- Multiagent coordination and control
- Coverage control
- Monitoring
- Creating virtual coordinates for geographic routing
- Decentralized task assignment
- Flocking

The DeGroot opinion pooling model (1974)

$$
\begin{array}{ll}
x_{i}(t+1)=\sum_{j} a_{i j} x_{j}(t) & a_{i j} \geq 0, \quad \sum_{j} a_{i j}=1 \\
x(t+1)=A x(t) & A: \text { stochastic matrix }
\end{array}
$$

- Markov chain theory + "mixing conditions"

\longrightarrow convergence of A^{t}, to matrix with equal rows
\longrightarrow convergence of x_{i} to $\sum_{j} \pi_{j} x_{j}$
\longrightarrow convergence rate estimates
- Averaging algorithms
- A doubly stochastic: $1^{\prime} A x=1^{\prime} x, \quad$ where $1^{\prime}=\left[\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right]$
$-x_{1}+\cdots+x_{n}$ is conserved
- convergence to $x^{*}=\frac{x_{1}(0)+\cdots+x_{n}(0)}{n}$

Part I: Distributed Optimization

Gradient-like methods

- $\min _{x} f(x)$
special case: $f(x)=\sum_{i} f_{i}(x)$
- f, f_{i} convex
- f smooth; work with $\nabla f(x)$
- update: $\quad x:=x-\gamma \nabla f(x)$
- with noise: $\quad x:=x-\gamma(\nabla f(x)+w)$ (stochastic approximation, $\gamma_{t} \rightarrow 0$)
- f nonsmooth, work with subgradient $\partial f(x)$
- update: $\quad x:=x-\gamma \partial f(x) \quad\left(\gamma_{t} \rightarrow 0\right)$
- with noise: $\quad x:=x-\gamma(\partial f(x)+w)$
- More sophisticated variants: Dual averaging methods

Smooth f; compentwise decentralization

- x_{j}^{i} : agent i, component j
- update: $\quad x_{i}^{i}:=x_{i}^{i}-\gamma \frac{\partial f}{\partial x_{i}}\left(x^{i}\right)$
- reconcile: $x_{j}^{i}:=x_{j}^{j} \quad$ (occasionally; upper bound B)
- Analysis: track $y=\left(x_{1}^{1}, \ldots, x_{n}^{n}\right)$

$$
\begin{aligned}
& \left\|y-x^{i}\right\|=O(B \gamma) \\
& y:=y-\gamma \nabla f(y)+O\left(B \gamma^{2}\right)
\end{aligned}
$$

- Convergence theorem for centralized gradient method remains valid: [Bertsekas, JNT, Athans, 86]
- need $\gamma \sim 1 / B$
- also for stochastic approximation variant

$$
x_{i}^{i}:=x_{i}^{i}-\gamma\left(\frac{\partial f}{\partial x_{i}}\left(x^{i}\right)+w_{i}\right)
$$

Smooth f; overlap and cooperate

- Assume (for simplicity) scalar x
- subscript denotes agent's value of x
$-x_{i}:=x_{i}-\gamma f\left(x_{i}\right)$ redundant/useless
- useful in the presence of noise:
- update: $\quad x_{i}:=x_{i}-\gamma\left(\nabla f\left(x_{i}\right)+w_{i}\right)$
- reconcile: $x:=x-\gamma \cdot \frac{1}{n} \sum_{i}\left(\nabla f\left(x_{i}\right)+w_{i}\right)$

Smooth f; overlap and cooperate (ctd.)

- Two-phase version
- update: $\quad x_{i}:=x_{i}-\gamma\left(\nabla f\left(x_{i}\right)+w_{i}\right)$
- reconcile: run consensus algorithm $x:=A x$

$$
\begin{gathered}
\text { converges: } x_{i} \rightarrow y, \forall i \quad y=\sum_{j} \pi_{j} x_{j} \quad \pi_{j} \geq 0 \\
y:=y-\gamma \sum_{j} \pi_{j}\left(\nabla f\left(x_{j}\right)+w_{j}\right)
\end{gathered}
$$

- expected update direction is still descent direction
- classical convergence results for centralized stochastic gradient method, with $\gamma_{t} \rightarrow 0$, remain valid

Smooth f; overlap and cooperate (ctd.)

- Interleaved version

$$
x_{i}:=\sum_{j} a_{i j} x_{j}-\gamma\left(\nabla f\left(x_{i}\right)+w_{i}\right)
$$

- define $y=\sum_{i} \pi_{i} x_{i}$
- note: $\sum_{i} \pi_{i} \sum_{j} a_{i j} x_{j}=\sum_{i} \pi_{i} x_{i}$

$$
y:=y-\gamma \sum_{i} \pi_{i}\left(\nabla f\left(x_{i}\right)+w_{i}\right)
$$

- $\left|x_{i}-y\right|=O(\gamma T \cdot|\nabla f(y)|)$
T : convergence time (time constant) of consensus algorithm

$$
y:=y-\gamma \sum_{i} \pi_{i}\left(\nabla f(y)+w_{j}\right)+O\left(\gamma^{2} T \cdot|\nabla f(y)|\right)
$$

- convergence theorem for centralized stochastic gradient method, with $\gamma_{t} \rightarrow 0$, remains valid [Bertsekas, JNT, Athans, 86]

Smooth, additive f; overlap and cooperate

- $f(x)=\frac{1}{n} \sum_{i} f_{i}(x) \quad$ optimality $\Longleftrightarrow \sum_{i} \nabla f_{i}(x)=0$
- Two-phase version
- update: $\quad x_{i}:=x_{i}-\gamma \nabla f_{i}\left(x_{i}\right)$
- reconcile: run consensus algorithm $x:=A x$

$$
\begin{gathered}
\text { converges: } x_{i} \rightarrow y, \forall i \quad y=\sum_{i} \pi_{i} x_{i} \quad \pi_{i} \geq 0 \\
y:=y-\gamma \sum_{i} \pi_{i} \nabla f_{i}\left(x_{i}\right)
\end{gathered}
$$

- correctness requires $\pi_{i}=1 / n$
- Use averaging algorithm (A: doubly stochastic)

Additive f; overlap and cooperate (ctd.)

- Interleaved version

$$
x_{i}:=\sum_{j} a_{i j} x_{j}-\gamma \nabla f_{i}\left(x_{i}\right)+w_{i}
$$

- define $y=\frac{1}{n} \sum_{i} x_{i}$

$$
y:=y-\gamma \frac{1}{n} \sum_{i} \nabla f_{i}\left(x_{i}\right)
$$

- $\left|x_{i}-y\right|=O\left(\gamma T \cdot \sum_{i}\left|\nabla f_{i}(y)\right|\right)$
T : convergence time (time constant) of averaging algorithm
- for constant γ, error does not vanish at optimum
- optimality possible only with $\gamma_{t} \rightarrow 0$ (even in the absence of noise)
- hence studied for nonsmooth f or stochastic case [Nedic \& Ozdaglar, 09; Duchi, Agarwal, \& Wainright, 10]

Convergence times - the big picture

- $T_{\mathrm{con}}(n, \epsilon)$: time for consensus/averaging algorithm to reduce disagreement from unity to ϵ
- generically $O(1 / \log (1 / \epsilon))$
- focus on $T_{\text {con }}(n)$
- $T_{\text {opt }}(n, \epsilon)$: time for centralized (sub)gradient algorithm to bring cost gap to ϵ
- hide dependence on other constants (bounds on first, second derivatives, stepsize details)
- Two-phase version: $O\left(T_{\mathrm{con}}(n) \cdot T_{\mathrm{opt}}(n, \epsilon)\right)$
- Interleaved version: Results have the same flavor
[Nedic \& Ozdaglar, 09; Duchi, Agarwal, \& Wainright, 10]
- is interleaving faster or "better" than two-phase version?
- Our mission: study and reduce $T_{\text {con }}(n)$ automatically better overall convergence time e.g., [Nedic, Olshevsky, Ozdaglar \& JNT, 08]

Part II: Consensus and averaging

Convergence time of consensus algorithms

$$
\begin{array}{ll}
x_{i}(t+1)=\sum_{j} a_{i j} x_{j}(t) & a_{i j} \geq 0, \quad \sum_{j} a_{i j}=1 \\
x(t+1)=A x(t) & A: \text { stochastic matrix }
\end{array}
$$

Convergence time (time to get close to "steady-state")
Equal weight to all neighbors
Directed graphs: exponential $(n) \quad$ Undirected graphs: $O\left(n^{3}\right)$, tight

(Landau and Odlyzko, 1981)

Better results for special graphs (Erdös-Rényi, geometric, small world)
$\Theta\left(n^{2}\right)$ for line graphs

Averaging algorithms

- A doubly stochastic: $1^{\prime} A x=1^{\prime} x$
- positive diagonal
- nonzero entries are $\geq \alpha>0$
- convergence to $x^{*}=\frac{x_{1}(0)+\cdots+x_{n}(0)}{n}$
- convergence time $=O\left(n^{2} / \alpha\right)$
$V(x)=\sum_{i}\left(x_{i}-x^{*}\right)^{2}$ is a Lyapunov function (Nedic, Olshevsky, Ozdaglar \& JNT, 09)
- bidirectional graph, natural algorithm:

$$
\begin{aligned}
& x_{i}:=x_{i}+\frac{1}{2 n} \sum_{\text {neighbors } j}\left(x_{j}-x_{i}\right) \\
& \alpha \sim \frac{1}{n} \quad \text { convergence time }=O\left(n^{3}\right)
\end{aligned}
$$

A critique

- The consensus/averaging algorithm $x:=A x$ assumes constant $a_{i j} \Longrightarrow$ fixed graph
- elect a leader, form a spanning tree, accumulate on tree
- Want simplicity and robustness in dealing with changing topologies, failures, etc.

Time-Varying/Chaotic Environments

- i.i.d. random graphs: same (in expectation) as fixed graphs; convergence rate \longleftrightarrow "mixing times" (Boyd et al., 2005)
- Fairly arbitrary sequence of graphs/matrices $A(t)$: worst-case analysis

$$
x_{i}(t+1)=\sum_{j} a_{i j}(t) x_{j}(t)
$$

$a_{i j}(t)$: nonzero whenever i receives message from j

$$
x(t+1)=A(t) x(t) \quad \text { (inhomogeneous Markov chain) }
$$

Consensus convergence

$$
x_{i}(t+1)=\sum_{j} a_{i j}(t) x_{j}(t)
$$

- $a_{i i}(t)>0$;

$$
a_{i j}(t)>0 \Rightarrow a_{i j}(t) \geq \alpha>0
$$

- "strong connectivity in bounded time": over B time steps "communication graph" is strongly connected
- Convergence to consensus:
$\forall i: \quad x_{i}(t) \rightarrow x^{*}=$ convex combination of initial values
(JNT, Bertsekas, Athans, 86; Jadbabaie et al., 03)
- "convergence time": exponential in n and B
- even with:
symmetric graph at each time equal weight to each neighbor (Cao, Spielman, Morse, 05)

Averaging in Time-Varying Setting

- $x(t+1)=A(t) x(t) \quad$ (Vedic, Olshevsky, Ozdaglar \& JNT, 09)
- $A(t)$ doubly stochastic, for all t
- $O\left(n^{2} / \alpha\right)$ bound remains valid!
- Improved convergence rate
- exchange "load" with up to two neighbors at a time
- can use $\alpha=O(1)$
- convergence time: $O\left(n^{2}\right)$
- Averaging in time-varying bidirectional graphs: no harder than consensus on fixed graphs
- Various convergence proofs of optimization algs. remain valid
- Improves the convergence time estimate for subgradient methods [Medic, Olshevsky, Ozdaglar, JNT, 09]

Can we beat $O\left(n^{2}\right)$?

- The program: Understand the question for static graphs
- Yes, for special static graphs
- No, in general, if we restrict to (possibly nonlinear) update functions

$$
x_{i}:=f\left(x_{j} ; j \in \text { neighbors of } i\right)
$$

that are smooth [Olshevsky \& JNT, 10]

- Nonlinearity cannot help
- Playing with the coefficients of random walks on a line does not help
- Yes, if we allow building a spanning tree
- We want to rule this out by picking a precise model of computation

A model of computation; static graphs

- To have a hope for strong lower bounds, rule out fancy encoding of information in real numbers
- work with discrete messages
- can only solve discrete problems
- The majority problem
$-x_{i} \in\{-1,1\} ;$ Is the average >0 ?
- Model:
- Fixed but unknown bidirectional graph
- No randomization
- Anonymous nodes, all running same code
- Bounded message alphabet

Majority problem under our model

- Is $O\left(n^{2}\right)$ possible, in the first place?
- Yes! (nontrivial)
(Hendrickx, Olshevsky \& JNT, 10)
- Idea: move -1 s and +1 s around
- cancel them when they meet
- see what is left
- Open questions
- Can we get a $\Omega\left(n^{2}\right)$ lower bound? (may be hard)
- Can we get $O\left(n^{2}\right)$ on directed static graphs?
- Can we get $O\left(n^{2}\right)$ method for time-varying graphs? (under what connectivity assumptions?)

Thank you!

