
Averaging algorithms and distributed
optimization

John N. Tsitsiklis
M I T

NIPS 2010 Workshop on Learning
on Cores, Clusters and Clouds

December 2010

Outline

• Motivation and applications

• Consensus/averaging in distributed optimization

• Convergence times of consensus/averaging

– time-invariant case

– time-varying case

28

The Setting

• n agents

– starting values xi(0)

• reach consensus on some x∗, with either:

– mini xi(0) ≤ x∗ ≤ maxi xi(0) (consensus)

– x∗ =
x1(0) + · · · + xn(0)

n
(averaging)

– averaging when xi ∈ {−1,+1} (voting)

• interested in:

– genuinely distributed algorithm

– no synchronization

– no “infrastructure” such as spanning trees

• simple updates, such as: xi :=
xi + xj

2
29

The Setting

• n agents

– starting values xi(0)

• reach consensus on some x∗, with either:

– mini xi(0) ≤ x∗ ≤ maxi xi(0) (consensus)

– x∗ =
x1(0) + · · · + xn(0)

n
(averaging)

– averaging when xi ∈ {−1,+1} (voting)

• interested in:

– genuinely distributed algorithm

– no synchronization

– no “infrastructure” such as spanning trees

• simple updates, such as: xi :=
xi + xj

2
29

The Setting

• n agents

– starting values xi(0)

• reach consensus on some x∗, with either:

– mini xi(0) ≤ x∗ ≤ maxi xi(0) (consensus)

– x∗ =
x1(0) + · · · + xn(0)

n
(averaging)

– averaging when xi ∈ {−1,+1} (voting)

• interested in:

– genuinely distributed algorithm

– no synchronization

– no “infrastructure” such as spanning trees

• simple updates, such as: xi :=
xi + xj

2
29

Social sciences

• Merging of “expert” opinions

• Evolution of public opinion

• Evolution of reputation

• Modeling of jurors

• Language evolution

• Preference for “simple” models

– behavior described by “rules of thumb”

– less complex than Bayesian updating

• interested in modeling, analysis (descriptive theory)

– . . . and narratives

Social sciences

• Merging of “expert” opinions

• Evolution of public opinion

• Evolution of reputation

• Modeling of jurors

• Language evolution

• Preference for “simple” models

– behavior described by “rules of thumb”

– less complex than Bayesian updating

• interested in modeling, analysis (descriptive theory)

– . . . and narratives

Social sciences

• Merging of “expert” opinions

• Evolution of public opinion

• Evolution of reputation

• Modeling of jurors

• Language evolution

• Preference for “simple” models

– behavior described by “rules of thumb”

– less complex than Bayesian updating

• interested in modeling, analysis (descriptive theory)

– . . . and narratives

Engineering
• Distributed computation and sensor networks

– Fusion of individual estimates
– Distributed Kalman filtering
– Distributed optimization
– Distributed reinforcement learning

• Networking
– Load balancing and resource allocation
– Clock synchronization
– Reputation management in ad hoc networks
– Network monitoring

• Multiagent coordination and control
– Coverage control
– Monitoring
– Creating virtual coordinates for geographic routing
– Decentralized task assignment
– Flocking

30

Asynchronous computation model

Asynchronous computation model

(JNT, Bertsekas, Athans, 1986)

xi(t + 1) =
∑

j

aij(t)xj

(
t− dij(t)

)

aij(t): nonzero whenever i receives message from j

dij(t): delay of that message

6

Asynchronous computation model

(JNT, Bertsekas, Athans, 1986)

xi(t + 1) =
∑

j

aij(t)xj

(
t− dij(t)

)

aij(t): nonzero whenever i receives message from j

dij(t): delay of that message

6

aij(t): nonzero whenever i receives message from j

dij(t): delay of that message

24

Averaging algorithms

• Averaging algorithms

– A doubly stochastic: 1′ A x = 1′ x, where 1′ = [1 1 . . . 1]

– x1 + · · · + xn is conserved

– convergence to x∗ =
x1(0) + · · · + xn(0)

n

34

The DeGroot opinion pooling model (1974)

xi(t + 1) =
∑

j

aij xj(t) aij ≥ 0,
∑

j aij = 1

x(t + 1) = Ax(t) A: stochastic matrix

• Markov chain theory + “mixing conditions”

−→ convergence of At, to matrix with equal rows

−→ convergence of xi to
∑

j πjxj

−→ convergence rate estimates

•

• x(t + 1) = A(t)x(t):
mixing conditions for nonstationary Markov chains
(Chatterjee and Seneta, 1977)

Θ(n2) for line graphs

Part I: Distributed Optimization

36

Gradient-like methods

• min
x

f(x) special case: f(x) =
∑

i

fi(x)

– f, fi convex

• f smooth; work with ∇f(x)

– update: x := x− γ∇f(x)

– with noise: x := x− γ(∇f(x) + w)
(stochastic approximation, γt → 0)

• f nonsmooth, work with ∂f(x)

– update: x := x− γ∂f(x) (γt → 0)

– with noise: x := x− γ(∂f(x) + w)

• More sophisticated variants: Dual averaging methods

36

Gradient-like methods

• min
x

f(x) special case: f(x) =
∑

i

fi(x)

– f, fi convex

• f smooth; work with ∇f(x)

– update: x := x− γ∇f(x)

– with noise: x := x− γ(∇f(x) + w)
(stochastic approximation, γt → 0)

• f nonsmooth, work with subgradient ∂f(x)

– update: x := x− γ∂f(x) (γt → 0)

– with noise: x := x− γ(∂f(x) + w)

• More sophisticated variants: Dual averaging methods

36

Smooth f; compentwise decentralization

• xi
j: agent i, component j

– update: xi
i := xi

i − γ
∂f

∂xi
(xi)

– reconcile: xi
j := xj

j (occasionally; upper bound B)

• Analysis: track y = (x1
1, . . . , xn

n)

y := y − γ∇f(x) + O(Bγ2)

• Convergence theorem for centralized gradient method remains
valid: [Bertsekas, JNT, Athans, 84]

– need γ ∼ 1/B

– also for stochastic approximation variant

xi
i := xi

i − γ
(

∂f

∂xi
(xi) + wi

)

37

Smooth f; compentwise decentralization

• xi
j: agent i, component j

– update: xi
i := xi

i − γ
∂f

∂xi
(xi)

– reconcile: xi
j := xj

j (occasionally; upper bound B)

• Analysis: track y = (x1
1, . . . , xn

n)

‖y − xi‖ = O(Bγ)

y := y − γ∇f(y) + O(Bγ2)

• Convergence theorem for centralized gradient method remains
valid: [Bertsekas, JNT, Athans, 84]

– need γ ∼ 1/B

– also for stochastic approximation variant

xi
i := xi

i − γ
(

∂f

∂xi
(xi) + wi

)

37

Smooth f; compentwise decentralization

• xi
j: agent i, component j

– update: xi
i := xi

i − γ
∂f

∂xi
(xi)

– reconcile: xi
j := xj

j (occasionally; upper bound B)

• Analysis: track y = (x1
1, . . . , xn

n)

‖y − xi‖ = O(Bγ)

y := y − γ∇f(y) + O(Bγ2)

• Convergence theorem for centralized gradient method remains
valid: [Bertsekas, JNT, Athans, 86]

– need γ ∼ 1/B

– also for stochastic approximation variant

xi
i := xi

i − γ
(

∂f

∂xi
(xi) + wi

)

37

Smooth f; overlap and cooperate

• Assume (for simplicity) scalar x

– subscript denotes agent’s value of x

– xi := xi − γf(xi) redundant/useless

• useful in the presence of noise:

– update: xi := xi − γ (∇f(xi) + wi)

– reconcile: x := x− γ ·
1

n

∑

i

(∇f(xi) + wi)

38

Smooth f; overlap and cooperate

• Assume (for simplicity) scalar x

– subscript denotes agent’s value of x

– xi := xi − γf(xi) redundant/useless

• useful in the presence of noise:

– update: xi := xi − γ (∇f(xi) + wi)

– reconcile: x := x− γ ·
1

n

∑

i

(∇f(xi) + wi)

38

Smooth f; overlap and cooperate

• Assume (for simplicity) scalar x

– subscript denotes agent’s value of x

– xi := xi − γf(xi) redundant/useless

• useful in the presence of noise:

– update: xi := xi − γ (∇f(xi) + wi)

– reconcile: x := x− γ ·
1

n

∑

i

(∇f(xi) + wi)

38

Smooth f; overlap and cooperate (ctd.)

• Two-phase version

– update: xi := xi − γ (∇f(xi) + wi)

– reconcile: run consensus algorithm x := Ax

converges: xi → y, ∀i y =
∑

j

πjxj πj ≥ 0

y := y − γ
∑

j

πj(∇f(xj) + wj)

• expected update direction is still descent direction

• classical convergence results for centralized stochastic
gradient method, with γt → 0, remain valid

39

Smooth f; overlap and cooperate (ctd.)

• Two-phase version

– update: xi := xi − γ (∇f(xi) + wi)

– reconcile: run consensus algorithm x := Ax

converges: xi → y, ∀i y =
∑

j

πjxj πj ≥ 0

y := y − γ
∑

j

πj(∇f(xj) + wj)

• expected update direction is still descent direction

• convergence theorem for centralized stochastic gradient method,
with γt → 0, remains valid: [Bertsekas, JNT, Athans, 86]

39

• convergence theorem for centralized stochastic gradient method,
with γt → 0, remains valid [Bertsekas, JNT, Athans, 86]

Smooth f; overlap and cooperate (ctd.)

• Interleaved version

xi :=
∑

j

aijxj + γ (∇f(xi) + wi)

– define y =
∑

i

πixi

– note:
∑

i

πi
∑

j

aijxj =
∑

i

πixi

y := y − γ
∑

i

πi(∇f(xi) + wi)

• |xi − y| = O(γT · |∇f(y)|)
T : convergence time (time constant) of consensus algorithm

y := y + γ
∑

i

πi(∇f(y) + wj) + O(γ2T · |∇f(y)|)

40

Smooth f; overlap and cooperate (ctd.)

• Interleaved version

xi :=
∑

j

aijxj − γ (∇f(xi) + wi)

– define y =
∑

i

πixi

– note:
∑

i

πi
∑

j

aijxj =
∑

i

πixi

y := y − γ
∑

i

πi(∇f(xi) + wi)

• |xi − y| = O(γT · |∇f(y)|)
T : convergence time (time constant) of consensus algorithm

y := y + γ
∑

i

πi(∇f(y) + wj) + O(γ2T · |∇f(y)|)

41

Smooth f; overlap and cooperate (ctd.)

• Interleaved version

xi :=
∑

j

aijxj − γ (∇f(xi) + wi)

– define y =
∑

i

πixi

– note:
∑

i

πi
∑

j

aijxj =
∑

i

πixi

y := y − γ
∑

i

πi(∇f(xi) + wi)

• |xi − y| = O(γT · |∇f(y)|)
T : convergence time (time constant) of consensus algorithm

y := y − γ
∑

i

πi(∇f(y) + wj) + O(γ2T · |∇f(y)|)

41

Smooth, additive f; overlap and cooperate

• f(x) =
1

n

∑

i

fi(x) optimality ⇐⇒
∑

i

∇fi(x) = 0

• Two-phase version

– update: xi := xi − γ∇fi(xi)

– reconcile: run consensus algorithm x := Ax

converges: xi → y, ∀i y =
∑

i

πixi πi ≥ 0

y := y − γ
∑

i

πi∇fi(xi)

• correctness requires πi = 1/n

– Use averaging algorithm (A: doubly stochastic)

41

Smooth, additive f; overlap and cooperate

• f(x) =
1

n

∑

i

fi(x) optimality ⇐⇒
∑

i

∇fi(x) = 0

• Two-phase version

– update: xi := xi − γ∇fi(xi)

– reconcile: run consensus algorithm x := Ax

converges: xi → y, ∀i y =
∑

i

πixi πi ≥ 0

y := y − γ
∑

i

πi∇fi(xi)

• correctness requires πi = 1/n

– Use averaging algorithm (A: doubly stochastic)

41

Additive f; overlap and cooperate (ctd.)

• Interleaved version

xi :=
∑

j

aijxj + γ∇fi(xi) + wi

– define y =
1

n

∑

i

xi

y := y − γ
1

n

∑

i

∇fi(xi)

• |xi − y| = O
(
γT · ∑

i |∇fi(y)|
)

T : convergence time (time constant) of averaging algorithm

– for constant γ, error does not vanish at optimum

– optimality possible only with γt → 0
(even in the absence of noise)

– hence studied for nonsmooth f or stochastic case
[Nedic & Ozdaglar, 09; Duchi, Agarwal, & Wainright, 10]

42

Additive f; overlap and cooperate (ctd.)

• Interleaved version

xi :=
∑

j

aijxj − γ∇fi(xi) + wi

– define y =
1

n

∑

i

xi

y := y − γ
1

n

∑

i

∇fi(xi)

• |xi − y| = O
(
γT · ∑

i |∇fi(y)|
)

T : convergence time (time constant) of averaging algorithm

– for constant γ, error does not vanish at optimum

– optimality possible only with γt → 0
(even in the absence of noise)

– hence studied for nonsmooth f or stochastic case
[Nedic & Ozdaglar, 09; Duchi, Agarwal, & Wainright, 10]

43

Convergence times— the big picture

• Tcon(n, ε): time for consensus/averaging algorithm
to reduce disagreement from unity to ε

– generically O(1/ log ε)

– focus on Tcon(n)

• Topt(n, ε): time for centralized (sub)gradient algorithm
to bring cost gap to ε

– hide dependence on other constants
(bounds on first, second derivatives, stepsize details)

• Two-phase version: O
(
Tcon(n) · Topt(n, ε)

)

• Interleaved version: Results have the same flavor
[Nedic & Ozdaglar, 09; Duchi, Agarwal, & Wainright, 10]

– is interleaving faster or “better” than two-phase version?

• Our mission: study and reduce Tcon(n)
automatically better overall convergence time
e.g., [Nedic, Olshevsky, Ozdaglar & JNT, 08]

43

Convergence times — the big picture

• Tcon(n, ε): time for consensus/averaging algorithm
to reduce disagreement from unity to ε

– generically O(1/ log(1/ε))

– focus on Tcon(n)

• Topt(n, ε): time for centralized (sub)gradient algorithm
to bring cost gap to ε

– hide dependence on other constants
(bounds on first, second derivatives, stepsize details)

• Two-phase version: O
(
Tcon(n) · Topt(n, ε)

)

• Interleaved version: Results have the same flavor
[Nedic & Ozdaglar, 09; Duchi, Agarwal, & Wainright, 10]

– is interleaving faster or “better” than two-phase version?

• Our mission: study and reduce Tcon(n)
automatically better overall convergence time
e.g., [Nedic, Olshevsky, Ozdaglar & JNT, 08]

44

Part II: Consensus and averaging

Asynchronous computation model

Asynchronous computation model

(JNT, Bertsekas, Athans, 1986)

xi(t + 1) =
∑

j

aij(t)xj

(
t− dij(t)

)

aij(t): nonzero whenever i receives message from j

dij(t): delay of that message

6

Asynchronous computation model

(JNT, Bertsekas, Athans, 1986)

xi(t + 1) =
∑

j

aij(t)xj

(
t− dij(t)

)

aij(t): nonzero whenever i receives message from j

dij(t): delay of that message

6

aij(t): nonzero whenever i receives message from j

dij(t): delay of that message

24

Convergence time (time to get close to “steady-state”)

Equal weight to all neighbors
Undirected graph: exponential(n) Directed graph: O(n3), tight

Better results for special graphs
(Erdös-Rényi, geometric, small world)

The DeGroot opinion pooling model (1974)

xi(t + 1) =
∑

j

aij xj(t) aij ≥ 0,
∑

j aij = 1

x(t + 1) = Ax(t) A: stochastic matrix

• Markov chain theory −→ convergence of At

• x(t + 1) = A(t)x(t):
mixing conditions for nonstationary Markov chains
(Chatterjee and Seneta, 1977)

Θ(n2) for line graphs

Convergence time (time to get close to “steady-state”)

Equal weight to all neighbors
Undirected graph: exponential(n)

Directed graph: O(n3), tight

Convergence time (time to get close to “steady-state”)

Equal weight to all neighbors
Directed graphs: exponential(n)

Undirected graphs: O(n3), tight
(Landay and Odlyzko, 1981)

Better results for special graphs
(Erdös-Rényi, geometric, small world)

Convergence time (time to get close to “steady-state”)

Equal weight to all neighbors
Directed graphs: exponential(n)

Undirected graphs: O(n3), tight
(Landau and Odlyzko, 1981)

Better results for special graphs
(Erdös-Rényi, geometric, small world)

The DeGroot opinion pooling model (1974)

Convergence time of consensus algorithms

xi(t + 1) =
∑

j

aij xj(t) aij ≥ 0,
∑

j aij = 1

x(t + 1) = Ax(t) A: stochastic matrix

• Markov chain theory + “mixing conditions”

−→ convergence of At, to matrix with equal rows

−→ convergence of xi to
∑

j πjxj

−→ convergence rate estimates

•

• x(t + 1) = A(t)x(t):
mixing conditions for nonstationary Markov chains
(Chatterjee and Seneta, 1977)

• Key fact: over B time steps
|∆V |

V
≥

α

2n2

(Nedic, Ozdaglar, Olshevsky & JNT, 08)

• bidirectional graph, natural algorithm:

xi := xi +
1

2n

∑

neighbors j

(xj − xi)

α ∼
1

n
=⇒ convergence time = O(n3) (tight)

• Key fact: over B time steps
|∆V |

V
≥

α

2n2

(Nedic, Ozdaglar, Olshevsky & JNT, 08)

• bidirectional graph, natural algorithm:

xi := xi +
1

2n

∑

neighbors j

(xj − xi)

α ∼
1

n
=⇒ convergence time = O(n3) (tight)

• Key fact: over B time steps
|∆V |

V
≥

α

2n2

(Nedic, Ozdaglar, Olshevsky & JNT, 08)

• bidirectional graph, natural algorithm:

xi := xi +
1

2n

∑

neighbors j

(xj − xi)

α ∼
1

n
convergence time = O(n3)

convergence time = Ω(n3)

Averaging algorithms

• A doubly stochastic: 1′A x = 1′ x

– positive diagonal

– nonzero entries are ≥ α > 0

– convergence to x∗ = x1(0)+···+xn(0)
n

– convergence time = O(n2/α)

• V (x) =
∑

i

(xi − x∗)2 is a Lyapunov function

convergence time = O(n2/α)

40

Averaging algorithms

• A(t) doubly stochastic: 1′A(t)x = 1′ x

– positive diagonal

– nonzero entries are ≥ α > 0

– strong connectivity over B time steps

– convergence to x∗ = x1(0)+···+xn(0)
n

– convergence time = O(n2/α)

• V (x) =
∑

i

(xi − x∗)2 is a Lyapunov function

convergence time = O(n2/α)

31

Averaging algorithms

• A doubly stochastic: 1′A x = 1′ x

– positive diagonal

– nonzero entries are ≥ α > 0

– convergence to x∗ = x1(0)+···+xn(0)
n

– convergence time = O(n2/α)

• V (x) =
∑

i

(xi − x∗)2 is a Lyapunov function

convergence time = O(n2/α)

40

• Key fact: over B time steps
|∆V |

V
≥

α

2n2

(Nedic, Olshevsky, Ozdaglar & JNT, 09)

• bidirectional graph, natural algorithm:

xi := xi +
1

2n

∑

neighbors j

(xj − xi)

α ∼
1

n
convergence time = O(n3)

convergence time = Ω(n3)

A critique

• The consensus/averaging algorithm x := Ax

assumes constant aij =⇒ fixed graph

– elect a leader, form a spanning tree, accumulate on tree

• Want simplicity and robustness in dealing with
changing topologies, failures, etc.

55

Variants

xi(t + 1) =
∑

j

aij xj(t) aij ≥ 0,
∑

j aij = 1

x(t + 1) = Ax(t) A: stochastic matrix

• Fixed matrix A, subject to given graph/zero patterns
optimize A via SDP (Boyd & Xiao, 2003)

• i.i.d. random graphs: same (in expectation) as fixed graphs;
convergence rate ←→ “mixing times” (Boyd et al., 2005)

• Fairly arbitrary sequence of graphs/matrices A(t):
worst-case analysis

• “equal-neighbor model”: xi := average of messages and own value

• bidirectional model: ∀ t: i→ j iff i← j

• doubly stochastic A(t): sum & average preserving

Asynchronous computation model

Asynchronous computation model

(JNT, Bertsekas, Athans, 1986)

xi(t + 1) =
∑

j

aij(t)xj

(
t− dij(t)

)

aij(t): nonzero whenever i receives message from j

dij(t): delay of that message

6

Asynchronous computation model

(JNT, Bertsekas, Athans, 1986)

xi(t + 1) =
∑

j

aij(t)xj

(
t− dij(t)

)

aij(t): nonzero whenever i receives message from j

dij(t): delay of that message

6

aij(t): nonzero whenever i receives message from j

dij(t): delay of that message

zero-delay case: x(t + 1) = A(t)x(t) (inhomogeneous chain)

27

Asynchronous computation model

Time-Varying/Chaotic Environments

Asynchronous computation model

(JNT, Bertsekas, Athans, 1986)

xi(t + 1) =
∑

j

aij(t)xj

(
t− dij(t)

)

aij(t): nonzero whenever i receives message from j

dij(t): delay of that message

6

Asynchronous computation model

(JNT, Bertsekas, Athans, 1986)

xi(t + 1) =
∑

j

aij(t)xj

(
t− dij(t)

)

aij(t): nonzero whenever i receives message from j

dij(t): delay of that message

6

aij(t): nonzero whenever i receives message from j

dij(t): delay of that message

zero-delay case: x(t + 1) = A(t)x(t) (inhomogeneous chain)

27

Asynchronous computation model

Asynchronous computation model

(JNT, Bertsekas, Athans, 1986)

xi(t + 1) =
∑

j

aij(t)xj

(
t− dij(t)

)

aij(t): nonzero whenever i receives message from j

dij(t): delay of that message

6

Asynchronous computation model

(JNT, Bertsekas, Athans, 1986)

xi(t + 1) =
∑

j

aij(t)xj

(
t− dij(t)

)

aij(t): nonzero whenever i receives message from j

dij(t): delay of that message

6

xi(t + 1) =
∑

j

aij(t)xj(t)

aij(t): nonzero whenever i receives message from j

dij(t): delay of that message

24

Asynchronous computation model

Asynchronous computation model

(JNT, Bertsekas, Athans, 1986)

xi(t + 1) =
∑

j

aij(t)xj

(
t− dij(t)

)

aij(t): nonzero whenever i receives message from j

dij(t): delay of that message

6

Asynchronous computation model

(JNT, Bertsekas, Athans, 1986)

xi(t + 1) =
∑

j

aij(t)xj

(
t− dij(t)

)

aij(t): nonzero whenever i receives message from j

dij(t): delay of that message

6

xi(t + 1) =
∑

j

aij(t)xj(t)

aij(t): nonzero whenever i receives message from j

dij(t): delay of that message

24
x(t + 1) = A(t)x(t) (inhomogeneous Markov chain)

Consensus convergence

xi(t + 1) =
∑

j

aij(t)xj

(
t)

• aii(t) > 0; aij(t) > 0 =⇒ aij(t) ≥ α > 0

• “strong connectivity in bounded time”:
over B time steps “communication graph”
is strongly connected

• Convergence to consensus:
∀ i : xi(t)→ x∗ =convex combination of initial values
(JNT, Bertsekas, Athans, 86; Jadbabaie et al., 03)

• “convergence time”: exponential in n and B

– even with:
symmetric graph at each time
equal weight to each neighbor
(Cao, Spielman, Morse, 05)

48

Averaging algorithms – analysis

• Suppose initially
∑

i xi(0) = 0,
∑

i x2
i = 1

some node has |xi| ≥ 1/
√

n some node has opposite sign

total gap at least 1/
√

n some gap at least 1/n1.5

• Over B steps, communicate across gap: V improves by ∼ α/n3

– Convergence time: O(n3/α) α ∼ 1/degree −→ O(n4)

– Account for simultaneous contributions of all gaps: O(n2/α)

– Keep degree bounded −→ 1/α bounded −→ O(n2)

• Averaging in time-varying graphs:
no harder than consensus on fixed graphs

Averaging algorithms – analysis

• Suppose initially
∑

i xi(0) = 0,
∑

i x2
i = 1

some node has |xi| ≥ 1/
√

n some node has opposite sign

total gap at least 1/
√

n some gap at least 1/n1.5

• Over B steps, communicate across gap: V improves by ∼ α/n3

– Convergence time: O(n3/α) α ∼ 1/degree −→ O(n4)

– Account for simultaneous contributions of all gaps: O(n2/α)

– Keep degree bounded −→ 1/α bounded

• Averaging in time-varying bidirectional graphs:
no harder than consensus on fixed graphs

Averaging in Time-Varying Setting

• x(t + 1) = A(t)x(t)

– A(t) doubly stochastic, for all t

– O(n2/α) bound remains valid!

• Improved convergence rate

– exchange “load” with up to two neighbors at a time

– can use α = O(1)

– convergence time: O(n2)

• Is there a Ω(n2) bound to be discovered?

42

Averaging in Time-Varying Setting

• x(t + 1) = A(t)x(t)

– A(t) doubly stochastic, for all t

– O(n2/α) bound remains valid!

• Improved convergence rate

– Exchange “load” with only one neighbor at a time

– can use α = O(1)

– convergence time: O(n2)

41

• Key fact: over B time steps
|∆V |

V
≥

α

2n2

(Nedic, Olshevsky, Ozdaglar & JNT, 09)

• bidirectional graph, natural algorithm:

xi := xi +
1

2n

∑

neighbors j

(xj − xi)

α ∼
1

n
convergence time = O(n3)

convergence time = Ω(n3)

≥ 1/n1.5

Averaging algorithms – analysis

• Suppose initially
∑

i xi(0) = 0,
∑

i x2
i = 1

some node has |xi| ≥ 1/
√

n some node has opposite sign

total gap at least 1/
√

n some gap at least 1/n1.5

• Over B steps, communicate across gap: V improves by ∼ α/n3

– Convergence time: O(n3/α) α ∼ 1/degree −→ O(n4)
– Account for simultaneous contributions of all gaps: O(n2/α)
– Keep degree bounded −→ 1/α bounded

• Averaging in time-varying bidirectional graphs:
no harder than consensus on fixed graphs

• Various convergence proofs of optimization algs. remain valid
– Improves the convergence time estimate for subgradient

methods [Nedic, Olshevsky, Ozdaglar, JNT, 09]

Can we beat O(n2)?

• The program: Understand the question for static graphs

• Yes, for special static graphs

• No, in general, if we restrict to (possibly nonlinear) update
functions

xi := f(xj; j ∈ neighbors of i)

that are smooth
[Olshevsky & JNT, 10]

– Nonlinearity cannot help

– Playing with the coefficients of random walks on a line
does not help

• Yes, if we allow building a spanning tree

• We want to rule this out by picking a precise model
of computation

56

Can we beat O(n2)?

• The program: Understand the question for static graphs

• Yes, for special static graphs

• No, in general, if we restrict to (possibly nonlinear) update
functions

xi := f(xj; j ∈ neighbors of i)

that are smooth [Olshevsky & JNT, 10]

– Nonlinearity cannot help

– Playing with the coefficients of random walks on a line
does not help

• Yes, if we allow building a spanning tree

• We want to rule this out by picking a precise model
of computation

56

Can we beat O(n2)?

• The program: Understand the question for static graphs

• Yes, for special static graphs

• No, in general, if we restrict to (possibly nonlinear) update
functions

xi := f(xj; j ∈ neighbors of i)

that are smooth [Olshevsky & JNT, 10]

– Nonlinearity cannot help

– Playing with the coefficients of random walks on a line
does not help

• Yes, if we allow building a spanning tree

• We want to rule this out by picking a precise model
of computation

57

A model of computation; static graphs

• To have a hope for strong lower bounds,
rule out fancy encoding of information in real numbers

– work with discrete messages

– can only solve discrete problems

• The majority problem

– xi(0) ∈ {−1,1}; Is the average > 0?

• Model:

– Fixed but unknown bidirectional graph

– No randomization

– Anonymous nodes, all running same code

– Bounded message alphabet

57

A model of computation; static graphs

• To have a hope for strong lower bounds,
rule out fancy encoding of information in real numbers

– work with discrete messages

– can only solve discrete problems

• The majority problem

– xi(0) ∈ {−1,1}; Is the average > 0?

• Model:

– Fixed but unknown bidirectional graph

– No randomization

– Anonymous nodes, all running same code

– Bounded message alphabet

57

A model of computation; static graphs

• To have a hope for strong lower bounds,
rule out fancy encoding of information in real numbers

– work with discrete messages

– can only solve discrete problems

• The majority problem

– xi ∈ {−1,1}; Is the average > 0?

• Model:

– Fixed but unknown bidirectional graph

– No randomization

– Anonymous nodes, all running same code

– Bounded message alphabet

58

Majority problem under our model

• Is O(n2) possible, in the first place?

• Yes! (nontrivial)
(Hendrickx, Olshevsky & JNT, 10)

• Idea: move −1s and +1s around

– cancel them when they meet

– see what is left

• Open questions

– Can we get a Ω(n2) lower bound? (may be hard)

– Can we get O(n2) on directed static graphs?

– Can we get O(n2) method for time-varying graphs?
(under what connectivity assumptions?)

59

Majority problem under our model

• Is O(n2) possible, in the first place?

• Yes! (nontrivial)
(Hendrickx, Olshevsky & JNT, 10)

• Idea: move −1s and +1s around

– cancel them when they meet

– see what is left

• Open questions

– Can we get a Ω(n2) lower bound? (may be hard)

– Can we get O(n2) on directed static graphs?

– Can we get O(n2) method for time-varying graphs?
(under what connectivity assumptions?)

59

!ank y"!

