A Convenient Framework for Efficient Parallel Multipass Algorithms

Markus Weimer

Joint Work with Sriram Rao and Martin Zinkevich
Intro / Point of view taken

- ML is data compression: from large training data to a small model
- We typically *iterate* over the training data
- The state shared between iterations is relatively small $O(\text{model})$

→ Many algorithms can be expressed as data-parallel loops with synchronization
In MapReduce

Overhead per Iteration:
- Job setup
- Data Loading
- Disk I/O

Map() → Reduce() → Distributed Filesystem

Data (each pass) → Status after one Pass → Pass Result
Worker/Aggregator

Advantages:
- Schedule once per Job
- Data stays in memory
- P2P communication

Distributed Filesystem
Worker

1. Load data

2. Iterate:
 1. Iterates over data
 2. Communicates state
 3. Waits for input state of next pass
Worker

1. Load data

2. Iterate:
 1. **Iterates over data ← user supplied function**
 2. Communicates state
 3. Waits for input state of next pass
Aggregator

- Receive state from the workers
- Aggregate state
- Send state to all workers
Aggregator

- Receive state from the workers
- **Aggregate state ← user supplied**
- Send state to all workers
Failure Handling in the Framework

- **Worker**
 - Meh (SGD)
 - Restart on different machine (else)

- **Aggregator**
 - Restart on different machine
 - Re-request data from workers
Experiments: Parallel Stochastic Gradient Descent

Work()
Stochastic Gradient Descent pass

Aggregate()
Average Models
Does it work? – Objective over #Passes

- Parallel eta=0.8
- Sequential, eta=0.1
- Sequential, eta=0.8
- Parallel, eta=6.4
Is it fast? – Time per pass (8 machines)

- Sequential: 1.00
- MapReduce: 0.45
- W/A 10 Passes: 0.06
- W/A 100 Passes: 0.03
- W/A Limit: 0.03

12/11/10