# A Convenient Framework for Efficient Parallel Multipass Algorithms

Markus Weimer



Joint Work with Sriram Rao and Martin Zinkevich

# Intro / Point of view taken

- ML is data compression: from large training data to a small model
- We typically *iterate* over the training data
- The state shared between iterations is relatively small O(model)

→Many algorithms can be expressed as data-parallel loops with synchronization



# In MapReduce











# Worker

- 1. Load data
- 2. Iterate:
  - 1. Iterates over data
  - 2. Communicates state
  - 3. Waits for input state of next pass



# Worker

- 1. Load data
- 2. Iterate:
  - 1. Iterates over data ← user supplied function
  - 2. Communicates state
  - 3. Waits for input state of next pass



## Aggregator

- Receive state from the workers
- Aggregate state
- Send state to all workers



## Aggregator

#### Receive state from the workers

# 

#### Send state to all workers

# **Failure Handling in the Framework**

## Worker

- › Meh (SGD)
- Restart on different machine (else)

# Aggregator

- > Restart on different machine
- > Re-request data from workers



## **Experiments: Parallel Stochastic Gradient Descent**

Work() Stochastic Gradient Descent pass

# Aggregate() Average Models



#### **Does it work? – Objective over #Passes**



# Is it fast? – Time per pass (8 machines)



#### markus weimer

Yahoo! Labs

weimer@yahoo-inc.com

#### YAHOO!

