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Motivation

• online algorithms often studied in serial setting

– fast, simple, good generalization, . . .
– but sequential in nature

• web-scale online prediction (e.g., search engines)

– inputs arrive at high rate

– need to provide real-time service

critical to use parallel/distributed computing

• how well can online algorithms (old or new)
perform in distributed setting?
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Stochastic online prediction

• repeat for each i = 1, 2, 3, . . .

– predict wi ∈W (e.g., based on ∇f (wi−1, zi−1))
– receive zi drawn i.i.d. from fixed distribution
– suffer loss f (wi , zi)

• measure quality of predictions using regret

R(m) =
m
∑

i=1

(f (wi , zi)− f (w ?, zi))

– w ? = argminw∈W Ez [f (w , z)]
– assume f (·, z) convex, W closed and convex
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Stochastic optimization

• find approximate solution to

minimize
w∈W

F (w) , Ez [f (w , z)]

• success measured by optimality gap

G (m) = F (wm)− F (w ?)

• different motivations

– often used to solve large-scale batch problem
– usually no real-time requirement

• how can parallel computing speed up solution?
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Distributed online prediction

• system has k nodes

• network model

– limited bandwidth
– latency
– non-blocking

• measure same regret

z1, z2, . . .

splitter

R(m) =
m
∑

i=1

(

f (wi , zi)− f (w ?, zi)
)
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Limits of performance

• an ideal (but unrealistic) solution

– run serial algorithm on a “super” computer
that is k times faster

– optimal regret bound: E[R(m)] ≤ O(
√
m)

• a trivial (no-communication) solution

– each node operates in isolation
– regret bound scales poorly with network size k

E[R(m)] ≤ k · O
(
√

m/k
)

= O
(
√
km

)
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Related work and contribution
• previous work on distributed optimization

– Tsitsiklis, Bertsekas and Athans (1986); Tsitsiklis and Bertsekas
(1989); Nedić, Bertsekas and Bokar (2001); Nedić and Ozdaglar
(2009); . . .

– Langford, Smola and Zinkevich (2009); Duchi, Agarwal and
Wainwright (2010); Zinkevich, Weimar, Smola and Li (2010); . . .

• when applied to problems considered here

our resultsprevious work

trivial ideal

online prediction O(
√
km) O(

√
m)

stochastic optimization O
(

1
√

T

)

O
(

1
√

kT

)
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Outline

• motivation and introduction

• variance bounds for serial algorithms

• DMB algorithm and regret bounds

• parallel stochastic optimization

• experiments on a web-scale problem
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Serial online algorithms
• projected gradient descent

wj+1 = πW

(

wj −
1

αj

gj

)

• dual averaging method

wj+1 = argmin
w∈W

{〈 j
∑

i=1

gi ,w

〉

+ αj h(w)

}

optimal regret bound (attained by αj = Θ(
√
j)):

E[R(m)] = O(
√
m)
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Variance bounds

• additional assumptions

– smoothness: ∀ z ∈ Z , ∀w ,w ′ ∈ W ,

‖∇w f (w , z)−∇w f (w
′, z)‖ ≤ L‖w − w ′‖

– bounded gradient variance: ∀w ∈ W ,

Ez

[

∥

∥∇w f (w , z)−∇F (w)]
∥

∥

2
]

≤ σ2

• Theorem: refined bound using αj=L+(σ/D)
√
j

E[R(m)] ≤ 2D2L+ 2Dσ
√
m , ψ(σ2,m)
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Variance reduction via mini-batching
• mini-batching

– predict b samples using same predictor
– update predictor based on average gradients

not a new idea, but no theoretical support

• our analysis: consider averaged cost function

f̄ (w , (z1, . . . , zb)) , 1
b

∑b
s=1 f (w , zs)

– ∇w f̄ has variance σ2

b
; at most

⌈

m
b

⌉

batches
– serial regret bound:

b · ψ
(

σ2

b
,
⌈

m
b

⌉

)

≤ 2bD2L+ 2Dσ
√
m + b
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Distributed mini-batch (DMB)

• for each node

– accumulate gradients
of first b/k inputs

– vector-sum to compute
ḡj over b gradients

– update wj+1 based on ḡj

• expected regret bound

(b + µ)ψ

(

σ2

b
,

⌈

m

b + µ

⌉)

1 2 . . . k

wj

wj+1

b

µ
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Regret bound for DMB
• suppose ψ(σ2,m) = 2D2L+ 2Dσ

√
m

– if b = mρ for any ρ ∈ (0, 1/2), then

E[R(m)] ≤ 2Dσ
√
m + o(

√
m)

– choose b = m1/3, bound becomes

2Dσ
√
m + 2D (LD + σ

√
µ)m1/3 + O(m1/6)

• asymptotically optimal: dominant term same as
in ideal serial solution

• scale nicely with latency: often µ ∝ log(k)
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Stochastic Optimization
• find approximate solution to

minimize
w∈W

F (w) , Ez [f (w , z)]

• success measured by optimality gap

G (m) = F (w̄m)− F (w ?)

• for convex loss and i.i.d. inputs

E[G (m)] ≤ 1

m
E[R(m)] ≤ 1

m
ψ(σ2,m), ψ̄(σ2,m)
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DMB for stochastic optimization

• for each node

– accumulate gradients
of b/k inputs

– vector-sum to compute
ḡj over b gradients

– update wj+1 based on ḡj

• bound on optimality gap

E[G (m)] ≤ ψ̄

(

σ2

b
,
m

b

)

1 2 . . . k

wj

wj+1

b
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DMB for stochastic optimization

• if serial gap is ψ̄(σ2,m) = 2D2L
m

+ 2Dσ√
m
, then

E[G (m)] ≤ ψ̄

(

σ2

b
,
m

b

)

=
2bD2L

m
+

2Dσ√
m

• parallel speed-up

S =
m

m
b

(

b
k
+ δ

) =
k

1 + δ
b
k

– asymptotic linear speed-up with b ∝ m1/3

– similar result for reaching same optimality gap
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Web-scale experiments

• an online binary prediction problem

– predict highly monetizable queries
– log of 109 queries issued to a commercial

search engine

• logistic loss function

f (w , z) = log
(

1 + exp(−〈w , z〉)
)

• algorithm: stochastic dual averaging method
(separate 5x108 queries for parameter tuning)
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Experiments: serial mini-batching
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Experiments: DMB vs. others
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Experiments: DMB vs. others
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Experiments: effects of latency

10
5

10
6

10
7

10
8

10
9

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76
b=1024

 

 

µ=40
µ=320
µ=1280
µ=5120

number of inputs

av
er
ag
e
lo
ss

21



Experiments: optimal batch size
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• fixed cluster size k = 32 (latency µ = 20)

• empirical observations

– large batch size (b = 512) beneficial at first
– small batch size (b = 128) better in the end
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Summary

• distributed stochastic online prediction

– DMB turns serial algorithms into parallel ones
– optimal O(

√
m) regret bound for smooth loss

• stochastic optimization: near linear speed-up

• first provable demonstration that distributed
computing worthwhile for these two problems

future directions

• DMB in asynchronous distributed environment
(progress made, report available on arXiv)

• non-smooth functions? non-stochastic inputs?
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