Optimal Distributed Online Prediction using Mini-Batches

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao

Microsoft Research

NIPS Workshop on Learning on Cores, Clusters and Clouds December 11, 2010

Motivation

- online algorithms often studied in serial setting
 - fast, simple, good generalization, ...
 - but sequential in nature
- web-scale online prediction (e.g., search engines)
 - inputs arrive at high rate
 - need to provide *real-time* service
 critical to use parallel/distributed computing
- how well can online algorithms (old or new) perform in distributed setting?

Stochastic online prediction

- repeat for each $i = 1, 2, 3, \ldots$
 - predict $w_i \in W$ (e.g., based on $\nabla f(w_{i-1}, z_{i-1})$)
 - receive z_i drawn i.i.d. from fixed distribution
 - suffer loss $f(w_i, z_i)$
- measure quality of predictions using regret

$$R(m) = \sum_{i=1}^{m} \left(f(w_i, z_i) - f(w^*, z_i) \right)$$

- $w^* = \arg \min_{w \in W} \mathbb{E}_z[f(w, z)]$ - assume $f(\cdot, z)$ convex, W closed and convex

Stochastic optimization

• find approximate solution to

$$\underset{w \in W}{\text{minimize}} \quad F(w) \triangleq \mathbb{E}_{z}[f(w, z)]$$

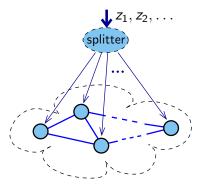
success measured by optimality gap

$$G(m) = F(w_m) - F(w^*)$$

- different motivations
 - often used to solve large-scale batch problem
 - usually no real-time requirement
- how can parallel computing speed up solution?

Distributed online prediction

- system has k nodes
- network model
 - limited bandwidth
 - latency
 - non-blocking
- measure same regret



$$R(m) = \sum_{i=1}^{m} (f(w_i, z_i) - f(w^*, z_i))$$

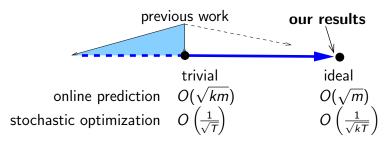
Limits of performance

- an ideal (but unrealistic) solution
 - run serial algorithm on a "super" computer that is k times faster
 - optimal regret bound: $\mathbb{E}[R(m)] \leq O(\sqrt{m})$
- a trivial (no-communication) solution
 - each node operates in isolation
 - regret bound scales poorly with network size k

$$\mathbb{E}[R(m)] \leq k \cdot O(\sqrt{m/k}) = O(\sqrt{km})$$

Related work and contribution

- previous work on distributed optimization
 - Tsitsiklis, Bertsekas and Athans (1986); Tsitsiklis and Bertsekas (1989); Nedić, Bertsekas and Bokar (2001); Nedić and Ozdaglar (2009); ...
 - Langford, Smola and Zinkevich (2009); Duchi, Agarwal and Wainwright (2010); Zinkevich, Weimar, Smola and Li (2010); ...
- when applied to problems considered here



Outline

- motivation and introduction
- variance bounds for serial algorithms
- DMB algorithm and regret bounds
- parallel stochastic optimization
- experiments on a web-scale problem

Serial online algorithms

projected gradient descent

$$w_{j+1} = \pi_W \left(w_j - \frac{1}{\alpha_j} g_j \right)$$

dual averaging method

$$w_{j+1} = \arg\min_{w \in W} \left\{ \left\langle \sum_{i=1}^{j} g_{i}, w \right\rangle + \alpha_{j} h(w) \right\}$$

optimal regret bound (attained by $\alpha_j = \Theta(\sqrt{j})$):

$$\mathbb{E}[R(m)] = O(\sqrt{m})$$

Variance bounds

- additional assumptions
 - smoothness: $\forall z \in Z, \ \forall w, w' \in W$,

$$\|\nabla_w f(w,z) - \nabla_w f(w',z)\| \leq L \|w - w'\|$$

- bounded gradient variance: $\forall w \in W$, $\mathbb{E}_{z} \left[\left\| \nabla_{w} f(w, z) - \nabla F(w) \right] \right\|^{2} \right] \leq \sigma^{2}$
- **Theorem:** refined bound using $\alpha_j = L + (\sigma/D)\sqrt{j}$ $\mathbb{E}[R(m)] \leq 2D^2L + 2D\sigma\sqrt{m} \triangleq \psi(\sigma^2, m)$

Variance reduction via mini-batching

- mini-batching
 - predict *b* samples using same predictor
 - update predictor based on average gradients
 not a new idea, but no theoretical support
- our analysis: consider averaged cost function

$$\overline{f}(w,(z_1,\ldots,z_b)) \triangleq \frac{1}{b}\sum_{s=1}^b f(w,z_s)$$

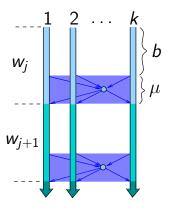
- $\nabla_w \overline{f}$ has variance $\frac{\sigma^2}{b}$; at most $\left\lceil \frac{m}{b} \right\rceil$ batches - serial regret bound:

$$b \cdot \psi\left(\frac{\sigma^2}{b}, \left\lceil \frac{m}{b} \right\rceil\right) \le 2bD^2L + 2D\sigma\sqrt{m+b}$$

Distributed mini-batch (DMB)

- for each node
 - accumulate gradients of first b/k inputs
 - vector-sum to compute \bar{g}_j over *b* gradients
 - update w_{j+1} based on \bar{g}_j
- expected regret bound

$$(b+\mu)\psi\left(rac{\sigma^2}{b},\left\lceilrac{m}{b+\mu}
ight
ceil
ight)$$



Regret bound for DMB • suppose $\psi(\sigma^2, m) = 2D^2L + 2D\sigma\sqrt{m}$ - if $b = m^{\rho}$ for any $\rho \in (0, 1/2)$, then $\mathbb{E}[R(m)] \leq 2D\sigma\sqrt{m} + o(\sqrt{m})$ - choose $b = m^{1/3}$, bound becomes $2D\sigma\sqrt{m} + 2D(LD + \sigma\sqrt{\mu})m^{1/3} + O(m^{1/6})$

- asymptotically optimal: dominant term same as in ideal serial solution
- scale nicely with latency: often $\mu \propto \log(k)$

Stochastic Optimization

• find approximate solution to

$$\underset{w \in W}{\text{minimize}} \quad F(w) \triangleq \mathbb{E}_{z}[f(w, z)]$$

success measured by optimality gap

$$G(m) = F(\bar{w}_m) - F(w^*)$$

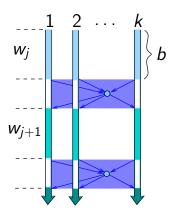
• for convex loss and i.i.d. inputs

$$\mathbb{E}[G(m)] \leq rac{1}{m} \mathbb{E}[R(m)] \leq rac{1}{m} \psi(\sigma^2, m) \triangleq ar{\psi}(\sigma^2, m)$$

DMB for stochastic optimization

- for each node
 - accumulate gradients of b/k inputs
 - vector-sum to compute \bar{g}_j over *b* gradients
 - update w_{j+1} based on \bar{g}_j
- bound on optimality gap

$$\mathbb{E}[G(m)] \leq \bar{\psi}\left(\frac{\sigma^2}{b}, \frac{m}{b}\right)$$



DMB for stochastic optimization

• if serial gap is $\bar{\psi}(\sigma^2,m) = \frac{2D^2L}{m} + \frac{2D\sigma}{\sqrt{m}}$, then

$$\mathbb{E}[G(m)] \leq \bar{\psi}\left(\frac{\sigma^2}{b}, \frac{m}{b}\right) = \frac{2bD^2L}{m} + \frac{2D\sigma}{\sqrt{m}}$$

parallel speed-up

$$S = rac{m}{rac{m}{b}\left(rac{b}{k}+\delta
ight)} = rac{k}{1+rac{\delta}{b}k}$$

- asymptotic linear speed-up with $b \propto m^{1/3}$
- similar result for reaching same optimality gap

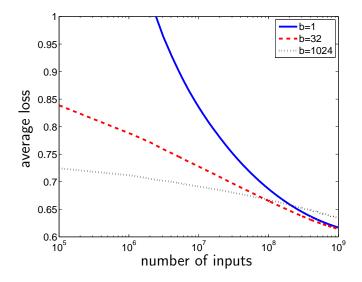
Web-scale experiments

- an online binary prediction problem
 - predict highly monetizable queries
 - log of 10⁹ queries issued to a commercial search engine
- logistic loss function

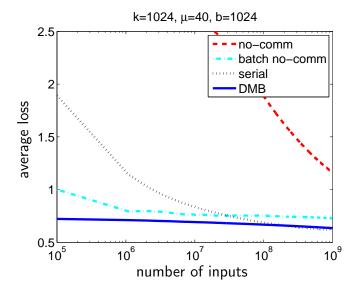
$$f(w,z) = \log(1 + \exp(-\langle w, z \rangle))$$

 algorithm: stochastic dual averaging method (separate 5x10⁸ queries for parameter tuning)

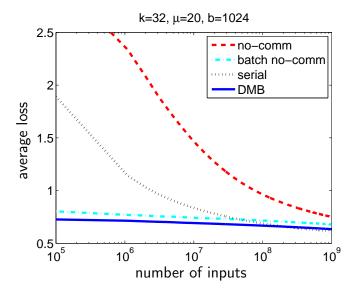
Experiments: serial mini-batching



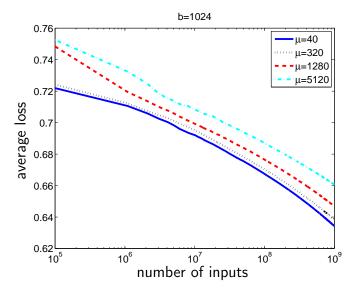
Experiments: DMB vs. others



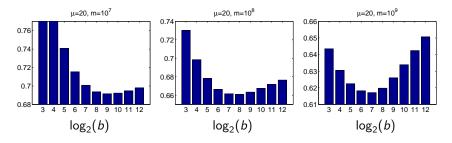
Experiments: DMB vs. others



Experiments: effects of latency



Experiments: optimal batch size



- fixed cluster size k = 32 (latency $\mu = 20$)
- empirical observations
 - large batch size (b = 512) beneficial at first
 - small batch size (b = 128) better in the end

Summary

- distributed stochastic online prediction
 - DMB turns serial algorithms into parallel ones
 - optimal $O(\sqrt{m})$ regret bound for smooth loss
- stochastic optimization: near linear speed-up
- *first* provable demonstration that distributed computing worthwhile for these two problems

future directions

- DMB in asynchronous distributed environment (progress made, report available on arXiv)
- non-smooth functions? non-stochastic inputs?