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Motivation

e online algorithms often studied in serial setting

— fast, simple, good generalization, ...
— but sequential in nature

e web-scale online prediction (e.g., search engines)

— inputs arrive at high rate
— need to provide real-time service

critical to use parallel/distributed computing

e how well can online algorithms (old or new)
perform in distributed setting?



Stochastic online prediction

e repeat foreach i =1,2,3,...
— predict w; € W (e.g., based on Vi (w; 1,z 1))
— receive z; drawn i.i.d. from fixed distribution
— suffer loss f(w;, z)

e measure quality of predictions using regret

R(m) = Z (f(w;, z7) — F(w*, z))

— w* = argmin, ¢y E,[f(w, Z)]
— assume f(-, z) convex, W closed and convex



Stochastic optimization

find approximate solution to

minimize  F(w) £ E,[f(w, )]

weW

success measured by optimality gap
G(m) = F(wm) — F(w?)

different motivations

— often used to solve large-scale batch problem
— usually no real-time requirement

how can parallel computing speed up solution?



Distributed online prediction

e system has k nodes a2,

':splitteF)

e network model
— limited bandwidth
— latency
— non-blocking

e measure same regret

m

R(m) = Z(f(Wi, z;) — f(w*", )

i=1



Limits of performance

e an ideal (but unrealistic) solution

— run serial algorithm on a “super” computer
that is k times faster
— optimal regret bound: E[R(m)] < O(y/m)

e a trivial (no-communication) solution
— each node operates in isolation
— regret bound scales poorly with network size k

E[R(m)] < k-O(y/m/k) = O(Vkm)



Related work and contribution

e previous work on distributed optimization

— Tsitsiklis, Bertsekas and Athans (1986); Tsitsiklis and Bertsekas
(1989); Nedi¢, Bertsekas and Bokar (2001); Nedi¢ and Ozdaglar
(2009); ...

— Langford, Smola and Zinkevich (2009); Duchi, Agarwal and
Wainwright (2010); Zinkevich, Weimar, Smola and Li (2010); ...

e when applied to problems considered here

previous work our results
-------- o
trivial ideal
online prediction  O(vkm) O(v/m)

stochastic optimization O (\#) 0 <\/%)



Outline

motivation and introduction
variance bounds for serial algorithms
DMB algorithm and regret bounds
parallel stochastic optimization

experiments on a web-scale problem



Serial online algorithms

e projected gradient descent

1
Wj+1 = Tw (Wj - ;jgj)

e dual averaging method

J
wj1 = arg min{<2g,-, W> + a; h(W)}
i=1

weW
optimal regret bound (attained by a; = ©(1/))):

E[R(m)] = O(v'm)



Variance bounds

e additional assumptions
— smoothness: Vze€ Z, Vw,w' € W,

IVwf(w,2) = Vuf(w', 2)|| < Lljw — /|
— bounded gradient variance: Vw € W,
E, [vaf(w,z) - VF(W)]M < o2
o Theorem: refined bound using a;=L+(0/D)+/j
E[R(m)] < 2D*L+2Dovm = (o, m)
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Variance reduction via mini-batching
e mini-batching
— predict b samples using same predictor
— update predictor based on average gradients
not a new idea, but no theoretical support

e our analysis: consider averaged cost function
r b
f(w,(zi,...,25)) = %25:1 f(w,z)

— V,f has variance "—;; at most (%1 batches
— serial regret bound:

b-v(%. [%]) < 26DL + 2Dov/m + b
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Distributed mini-batch (DMB)

e for each node

— accumulate gradients
of first b/k inputs

— vector-sum to compute
gj over b gradients

— update wj; based on g;

o expected regret bound

on (i)

Wj+1
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Regret bound for DMB
o suppose (02, m) = 2D?L + 2Do\/m
— if b= m”’ for any p € (0,1/2), then
E[R(m)] < 2Doy/m + ofy/m)

1/3

— choose b = m*/°, bound becomes

2Do+/m + 2D (LD + o/i) m*3 4+ O(m'/®)

e asymptotically optimal: dominant term same as
in ideal serial solution

e scale nicely with latency: often u o log(k)
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Stochastic Optimization
e find approximate solution to

minimize  F(w) £ E,[f(w, z)]

weWw

e success measured by optimality gap
G(m) = F(wm) — F(w?)

e for convex loss and i.i.d. inputs

E[G(m)] < E[R(m)] < —(o®, m)& ¥(o, m)
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DMB for stochastic optimization

e for each node
— accumulate gradients
of b/k inputs w;j
— vector-sum to compute
gj over b gradients
— update wj; based on g;
Wj+1
e bound on optimality gap

ete(ml < 7(%.7)

e
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DMB for stochastic optimization

o if serial gap is (0%, m) = M + 209 then

el
o® m 2bD?*L  2Do
E|G <
6] < 3(%. 7 ) =2+ 2
e parallel speed-up
m k

m(b4s) 1+ %k
— asymptotic linear speed-up with b x m*/3
— similar result for reaching same optimality gap
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Web-scale experiments

e an online binary prediction problem

— predict highly monetizable queries
— log of 10° queries issued to a commercial
search engine

e logistic loss function
f(w,z)= Iog(l + exp(—(w, z>))

e algorithm: stochastic dual averaging method
(separate 5x10® queries for parameter tuning)
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Experiments: serial mini-batching
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Experiments: DMB vs. others
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Experiments: DMB vs. others

k=32, p=20, b=1024
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Experiments: effects of latency

b=1024
0.76
— =4
[ ~~~‘ﬁ—3go
- = H
0.74r el - - ~=1280
. RN H=5120
0.727

average loss

0.64

0.62 : : :
10° 10° 10’ 10° 10°

number of inputs
21



Experiments: optimal batch size
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o fixed cluster size k = 32 (latency u = 20)

e empirical observations

— large batch size (b = 512) beneficial at first
— small batch size (b = 128) better in the end
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Summary

e distributed stochastic online prediction

— DMB turns serial algorithms into parallel ones
— optimal O(y/m) regret bound for smooth loss

e stochastic optimization: near linear speed-up

e first provable demonstration that distributed
computing worthwhile for these two problems

future directions

e DMB in asynchronous distributed environment
(progress made, report available on arXiv)
e non-smooth functions? non-stochastic inputs?
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