
Gradient Boosted Decision Trees
on Hadoop

jerry ye | jyh-herng chow | jiang chen | zhaohui zheng

Agenda

  Overview

›  GBDT

›  Implementations

›  Related Work

  GBDT

›  Learning a tree

›  Boosting

  Method

›  MapReduce Implementations

›  MPI Implementation

  Results

  Conclusion

Introduction

Gradient Boosted Decision
Trees (GBDT) is a machine
learning algorithm that
iteratively constructs an
ensemble of weak decision
tree learners through boosting.

What is GBDT?

  Gradient Boosted Decision Trees was introduced by Jerome
Friedman in 1999

  An additive regression model over an ensemble of trees, fitted to
current residuals, gradients of the loss function, in a forward step-wise
manner

  Favors many shallow trees (e.g., 6 nodes, 2000 trees)

  Advanced Algorithms: GBRank, SmoothDCG

  Numerous applications within Yahoo!

  Blender in Bellkor’s winning Netflix solution

+ + + …

Advantages

  Feature normalization is not required

  Feature selection is inherently performed during the learning process

  Not prone to collinear/identical features

  Models are relatively easy to interpret

  Easy to specify different loss functions

Disadvantages

  Boosting is a sequential process, not parallelizable

  Compute intensive

  Can perform poorly on high dimensional sparse data, e.g. bag of
words

Known Implementations

  Salford’s TreeNet

  gbm package in R

  PLANET: Massively Parallel Learning of Tree Ensembles with
MapReduce, Panda et. al.

  Tong Zhang implemented GBDT while at YRL

  More implementations at this workshop

Algorithm Overview

Algorithm

Algorithm:

€

F0(x) = argminγ Ψ(yi,γ)
i=1

N
∑

For m =1 to M do :

 yim = - ∂Ψ(yi,F(x i))
∂Ψ(F(x i))

⎡

⎣
⎢

⎤

⎦
⎥
F (x)=Fm−1 (x)

, i =1,N

 {Rlm}1
L = growtree({yim,x i}1

N)

 γ lm = argminγ Ψ(yi,Fm−1(xi) +γ)
x i ∈Rlm

∑

 Fm (x) = Fm -1(x) +ν⋅ γ lm1(x∈Rlm)
l=1

L
∑

end

Friedman “Stochastic Gradient Boosting”, 1999

New targets are computed
at each iteration

Responses for terminal
nodes

Shrinkage ν controls
learning rate

Grow L-terminal tree

{y,x}: dataset
Ψ: loss function
γ: node score
Μ: number of trees
Ν: training set size
Fm(x): mth tree
yim: residuals
ν: shrinkage

GBDT Process

  Each tree, partition sample space by growing n nodes

  Compute gradient and repeat

Splitting a Node

Partitioning

Update Residuals

Gradient
Boosting

Train a decision tree

labels	

1
1
1
1
1
2

f1

1
2
2
2
3
4

f2	

0
0
0
1
1
1

Find the best split using Information Gain:
•  Compute gain for each cut point
•  Choose cut with highest gain
•  Valid cutpoints:

f1 < 1.5
f1 < 2.5
f1 < 3.5
f2 < 0.5

gain = 10
gain = 30
gain = 57
gain = 25

Splitting a node

f1	

1
2
2
2
3
4

f2	

0
0
0
1
1
1

Using best split, partition the data
•  samples above the cut goes to left node
•  samples below cut goes to right node
•  find best cuts for new nodes

f1 < 3.5 gain = 57

f1<3.5

residual’ += mean(targetnode)

Partitioning

Boosting

€

Fm (x) = Fm−1(x) + ν ⋅ γ lm1(x ∈ Rlm)l=1

L
∑

gradientm+1(x) = label(x) − Fm (x)

labels	

1

1

1

1

1

2

•  Gradient can vary depending on loss function, least
squares shown
•  Gradients are targets for next tree
•  Stochastic boosting randomly subsamples training data for
each tree

+

Example Tree

ftsc < 0.99

ftsc <-1.82

ftsc < -3.74 fbdistm<118.
94

fprx<0.09 fqulen0<0.5

fqunavctr_us
< 0.03

ftsc<4.06

favedurh180
<83.5

fpgprodrev<
6.5

ftsc<5.98

fpgprodrev<
5.5

fcdgst<126.5

MapReduce
Implementations

f0 f1 f2 f3

s0 V0,0 V0,1 V0,2 V0,3

s1 V1,0 V1,1 V1,2 V1,3

s2 V2,0 V2,1 V2,2 V2,3

s3 V3,0 V3,1 V3,2 V3,3

s4 V4,0 V4,1 V4,2 V4,3

s5 V5,0 V5,1 V5,2 V5,3

Horizontal: Finding Cuts

Partition Data:

  Each mapper emits (<feature, value>, <residual, weight>) pairs

  Reducers aggregates pairs and sorts

  Process scales as more nodes are added

Reducer 1

Mapper 1

Mapper 2

Mapper 3

Finding Splits

•  Each mapper emmits:
(<feature,value>,<residual,weight>
•  Reducer aggregates cuts and sorts
•  Output: Sorted list of candidate
cutpoints
•  Single pass over sorted list to
compute best split

Partitioning Data

•  Split data according to cut
•  Output to DFS

MapReduce (horizontal)

•  Scales with more mappers
•  Method is slow!
•  5 minutes to train 1 node
•  Takes 211 minutes to train a 63 node tree
on 1.2M x 500 feature dataset
•  Reading from HDFS can take 1-2
minutes. We have 3 MapReduce jobs for a
tree node
•  Keep information in memory – vertical
partitioning

f0 f1 f2 f3

s0 V0,0 V0,1 V0,2 V0,3

s1 V1,0 V1,1 V1,2 V1,3

s2 V2,0 V2,1 V2,2 V2,3

s3 V3,0 V3,1 V3,2 V3,3

s4 V4,0 V4,1 V4,2 V4,3

s5 V5,0 V5,1 V5,2 V5,3

Vertical: Partition Data

  Each mapper gets a subset of
features

  Read features into memory

  Mappers are persistent until
ensemble is trained

Mapper 1 Mapper 2

Mapper 2

Mapper 1

•  f6
•  f7
•  f8

Find best local
cuts

partition

Update
residuals

Wait for
all cuts Start

•  f3
•  f4
•  f5

Find best local
cuts

•  f3<2.5

partition
•  Output

residuals

Update
residuals

•  f6
•  f7
•  f8

Find best local
cuts

Wait for
all cuts start

•  f3
•  f4
•  f5

Find best local
cuts

NFS NFS

Vertical Mappers

MPI Implementation

Message Passing Interface

  Message Passing Interface (MPI) allows many computers to communicate with
each other.

  Dominant model in high performance computing

  Scalable, portable

  Distributed shared memory for high RAM jobs

  OpenMPI is an open source implementation of MPI

  Low level and can be complicated to use

  Modified OpenMPI to run on Hadoop

  Fault tolerance
Master Slave 1 Slave 2

Out

Input

labels	

1

1

1

1

1

2

f1

1

2

2

2

3

4

f2	

0

0

0

1

1

1

Each machine gets a feature
•  Machine 1 finds local best split on f1
•  Machine 2 finds local best split on f2
•  Use MPI to broadcast local splits
•  Best global split found

f1 < 1.5

f1 < 2.5

f1 < 3.5

f2 < 0.5

gain = 10

gain = 30

gain = 57

gain = 25

Splitting a node

Machine 1

Machine 2

Global Best: f1 < 3.5

f1	

1

2

2

2

3

4

f2	

0

0

0

1

1

1

Using best cut, split the data
•  Only Machine 1 has f1 in memory, partition dataset
•  Partition is maintained in indices, send updated
index to others
•  All machines updates residuals

f1 < 3.5 gain = 57

f1<3.5

residual’ += mean(targetnode)

Partitioning

€

Fm (x) = Fm−1(x) + ν ⋅ γ lm1(x ∈ Rlm)l=1

L
∑

gradientm+1(x) = label(x) − Fm (x)

labels	

1

1

1

1

1

2

•  Scores are kept for all samples through training of trees
•  All machines computes new gradients and updates targets for
next tree
•  Repeat until finished

+

Boosting

Experiments

Scalability

MPI implementation faster than MapReduce using vertical partitioning

Scalability

Scalability for different dataset sizes

Experiment

+ + + …

+ + + …

Horizontal: 211 minutes x 2500 trees = 366 days x 100 machines
Vertical: 28 seconds x 2500 trees = 19.4 hours x 20 machines

5 seconds x 2500 trees = 3.4 hours x 10 machines

1800% less node hours!

MapReduce

MPI

Application

  Dataset (2M doc, 600 features)

  Tree Parameters: typical

›  Trees(2500), Terminal Nodes(20)

  Running time: (Runtime Memory: 4GB)

›  Single thread, single machine: 7 days

›  Multi-threads (6), single machine: 3.5 days

›  MPI on grid: 9 hours with 20 nodes, 12 hours with 10 nodes

›  More complex loss: 16 days -> 36 hours

Conclusions

  We have implemented a distributed version of GBDT

  Distributed version running faster than sequential version

  Can handle larger datasets that sequential version cannot

  Advanced algorithms based on GBDT can benefit from this framework

  Implementation GBDT uses MPI on Hadoop

  GBDT 6X faster than achievable using MapReduce

  1800% reduction in node hours

Thanks!
For more info: jerryye@yahoo-inc.com

References
1  AMDAHL, G. Validity of the single processor approach to

achieving large-scale computing capabilities. pp. 483–485.

2  CARAGEA, D., SILVESCU, A., AND HONAVAR, V. A framework
for learning from distributed data using sufficient statistics and
its application to learning decision trees. International Journal of
Hybrid Intelligent Systems 1, 2 (2004).

3  CHEN, K., LU, R., WONG, C. K., SUN, G., HECK, L., AND
TSENG, B. L. Trada: tree based ranking function adaptation. In
CIKM (2008), pp. 1143–1152.

4  DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified data
processing on large clusters. Commun. ACM 51, 1 (2008), 107–
113.

5  FOUNDATION, A. Apache hadoop project. lucene.apache.org/
hadoop.

6  FRIEDMAN, J. H. Greedy function approximation: A gradient
boosting machine. Annals of Statistics 29 (2001), 1189–1232.

7  FRIEDMAN, J. H. Stochastic gradient boosting. Comput. Stat.
Data Anal. 38, 4 (February 2002), 367–378.

8  GEHRKE, J., RAMAKRISHNAN, R., AND GANTI, V. Rainforest
- a framework for fast decision tree construction of large
datasets. In VLDB’98, Proceedings of 24rd International
Conference on Very Large Data Bases, August 24-27, 1998,
New York City, New York, USA (1998), A. Gupta, O. Shmueli,
and J. Widom, Eds., Morgan Kaufmann, pp. 416–427.

9  GRAHAM, R. L., AND GRAHAMT, R. L. Bounds on
multiprocessing timing anomalies. SIAM Journal on Applied
Mathematics 17 (1969), 416–429.

10  PANDA, B., HERBACH, J. S., BASU, S., AND BAYARDO, R. J.
Planet: Massively parallel learning of tree ensembles. In VLDB
2009, Proceedings of the 35th Int’l Conf. on Very Large Data
Bases (2009).

11  PROVOST, F., KOLLURI, V., AND FAYYAD, U. A survey of
methods for scaling up inductive algorithms. Data Mining and
Knowledge Discovery 3 (1999), 131–169.

12  QUINLAN, J. R. Induction of decision trees. In Machine
Learning (1986), pp. 81–106.

13  SHAFER, J. C., AGRAWAL, R., AND 0002, M. M. Sprint: A
scalable parallel classifier for data mining. In VLDB’96,
Proceedings of 22th International Conference on Very Large
Data Bases, September 3-6, 1996, Mumbai (Bombay), India
(1996), T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N.
L. Sarda, Eds., Morgan Kaufmann, pp. 544–555.

14  STATISTICS, L. B., AND BREIMAN, L. Random forests. In
Machine Learning (2001), pp. 5–32.

15  SU, J., AND ZHANG, H. A fast decision tree learning algorithm.
In AAAI (2006).

16  ZHENG, Z., CHEN, K., SUN, G., AND ZHA, H. A regression
framework for learning ranking functions using relative
relevance judgments. Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval (2007), 287–294.

