

Agenda

- Overview
 - → GBDT
 - > Implementations
 - > Related Work
- GBDT
 - Learning a tree
 - Boosting
- Method
 - MapReduce Implementations
 - MPI Implementation
- Results
- Conclusion

Introduction

Gradient Boosted Decision Trees (GBDT) is a machine learning algorithm that iteratively constructs an ensemble of weak decision tree learners through boosting.

What is GBDT?

- Gradient Boosted Decision Trees was introduced by Jerome Friedman in 1999
- An additive regression model over an ensemble of trees, fitted to current residuals, gradients of the loss function, in a forward step-wise manner
- Favors many shallow trees (e.g., 6 nodes, 2000 trees)
- Advanced Algorithms: GBRank, SmoothDCG
- Numerous applications within Yahoo!
- Blender in Bellkor's winning Netflix solution

Advantages

- Feature normalization is not required
- Feature selection is inherently performed during the learning process
- Not prone to collinear/identical features
- Models are relatively easy to interpret
- Easy to specify different loss functions

Disadvantages

- Boosting is a sequential process, not parallelizable
- Compute intensive
- Can perform poorly on high dimensional sparse data, e.g. bag of words

Known Implementations

- Salford's TreeNet
- gbm package in R
- PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce, Panda et. al.
- Tong Zhang implemented GBDT while at YRL
- More implementations at this workshop

Algorithm Overview

Algorithm

Algorithm:

$$F_0(\mathbf{x}) = \operatorname{arg\,min}_{\gamma} \sum_{i=1}^{N} \Psi(y_i, \gamma)$$

For m = 1 to M do:

{y,x}: dataset
Ψ: loss function
γ: node score
M: number of trees
N: training set size
F_m(x): mth tree
y_{im:} residuals
ν: shrinkage

$$y_{im} = -\left[\frac{\partial \Psi(y_i, F(\mathbf{x}_i))}{\partial \Psi(F(\mathbf{x}_i))}\right]_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})}, i = 1, N$$

New targets are computed at each iteration

$$\{R_{lm}\}_{1}^{L} = \text{growtree}(\{y_{im}, \mathbf{x}_{i}\}_{1}^{N})$$

Grow L-terminal tree

$$\gamma_{lm} = \operatorname{arg\,min}_{\gamma} \sum_{\mathbf{x}_i \in R_{lm}} \Psi(y_i, F_{m-1}(x_i) + \gamma)$$

Responses for terminal nodes

$$F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \mathbf{v} \cdot \sum_{l=1}^{L} \gamma_{lm} 1(\mathbf{x} \in R_{lm})$$

Shrinkage v controls learning rate

end

GBDT Process

- Each tree, partition sample space by growing n nodes
- Compute gradient and repeat

Splitting a node

Find the best split using Information Gain:

- Compute gain for each cut point
- Choose cut with highest gain
- Valid cutpoints:

$$f_1 < 1.5$$
 $gain = 10$
 $f_1 < 2.5$ $gain = 30$
 $f_1 < 3.5$ $gain = 57$
 $f_2 < 0.5$ $gain = 25$

Partitioning

Using best split, partition the data

- samples above the cut goes to left node
- samples below cut goes to right node
- find best cuts for new nodes

$$f_1 < 3.5$$
 gain = 57

residual' += mean(target_{node})

Boosting

labels

1

1

1

1

_

2

$$F_m(x) = F_{m-1}(x) + v \cdot \sum_{l=1}^{L} \gamma_{lm} 1(\mathbf{x} \in R_{lm})$$

$$gradient_{m+1}(x) = label(x) - F_m(x)$$

- Gradient can vary depending on loss function, least squares shown
- Gradients are targets for next tree
- Stochastic boosting randomly subsamples training data for each tree

Example Tree

MapReduce Implementations

Horizontal: Finding Cuts

Partition Data:

- Each mapper emits (<feature, value>, <residual, weight>) pairs
- Reducers aggregates pairs and sorts
- Process scales as more nodes are added

Finding Splits

Algorithm 1 Aggregating candidate splits map(key, value): $F \Leftarrow set of features$ $sample \Leftarrow split(value, delim)$ for f in F do key = (f, sample[f])value = (sample[residual], sample[weight]) emit(key, value) end for reduce(key, values): residual sum $\Leftarrow 0$ weight_sum $\Leftarrow 0$ for v in values do $residual_sum \leftarrow residual_sum + v.residual$ weight_sum ← weight_sum + v.weight end for emit(key, (residual_sum,weight_sum))

- Each mapper emmits: (<feature,value>,<residual,weight>
- Reducer aggregates cuts and sorts
- Output: Sorted list of candidate cutpoints
- Single pass over sorted list to compute best split

Partitioning Data

- Split data according to cut
- Output to DFS

Algorithm 2 Partitioning a Node n

```
map(key, value):
sample ← split(value,delim)
if sample[n.feature] < n.splitpoint then
    residual = sample[residual]+ n.left_response
else
    residual = sample[residual]+ n.right_response
end if
emit(key, value)</pre>
```


MapReduce (horizontal)

- Scales with more mappers
- Method is slow!
- 5 minutes to train 1 node
- Takes 211 minutes to train a 63 node tree on 1.2M x 500 feature dataset
- Reading from HDFS can take 1-2 minutes. We have 3 MapReduce jobs for a tree node
- Keep information in memory vertical partitioning

Vertical: Partition Data

- Each mapper gets a subset of features
- Read features into memory
- Mappers are persistent until ensemble is trained

Vertical Mappers

MPI Implementation

Message Passing Interface

- Message Passing Interface (MPI) allows many computers to communicate with each other.
- Dominant model in high performance computing
- Scalable, portable
- Distributed shared memory for high RAM jobs
- OpenMPI is an open source implementation of MPI
- Low level and can be complicated to use
- Modified OpenMPI to run on Hadoop
- Fault tolerance

Splitting a node

Each machine gets a feature

- Machine 1 finds local best split on f₁
- Machine 2 finds local best split on f₂
- Use MPI to broadcast local splits
- Best global split found

$$f_1 < 1.5$$
 $gain = 10$
 $f_1 < 2.5$ $gain = 30$ Machine 1

 $f_1 < 3.5$ $gain = 57$
 $f_2 < 0.5$ $gain = 25$ Machine 2

Global Best: $f_1 < 3.5$

Partitioning

Using best cut, split the data

- Only Machine 1 has f_1 in memory, partition dataset
- Partition is maintained in indices, send updated index to others
- All machines updates residuals

$$f_1 < 3.5$$
 $gain = 57$

$$f_1 < 3.5$$

$$residual' += mean(target_{node})$$

Boosting

labels

1

1

1

1

1

2

- Scores are kept for all samples through training of trees
- All machines computes new gradients and updates targets for next tree
- Repeat until finished

Scalability

MPI implementation faster than MapReduce using vertical partitioning

Scalability

Scalability for different dataset sizes

Experiment

MapReduce

Horizontal: 211 minutes x 2500 trees = 366 days x 100 machines Vertical: 28 seconds x 2500 trees = 19.4 hours x 20 machines

5 seconds x 2500 trees = 3.4 hours x 10 machines

1800% less node hours!

Application

- Dataset (2M doc, 600 features)
- Tree Parameters: typical
 - Trees(2500), Terminal Nodes(20)
- Running time: (Runtime Memory: 4GB)
 - > Single thread, single machine: 7 days
 - Multi-threads (6), single machine: 3.5 days
 - > MPI on grid: 9 hours with 20 nodes, 12 hours with 10 nodes
 - More complex loss: 16 days -> 36 hours

Conclusions

- We have implemented a distributed version of GBDT
- Distributed version running faster than sequential version
- Can handle larger datasets that sequential version cannot
- Advanced algorithms based on GBDT can benefit from this framework
- Implementation GBDT uses MPI on Hadoop
- GBDT 6X faster than achievable using MapReduce
- 1800% reduction in node hours

Thanks!

For more info: jerryye@yahoo-inc.com

References

- AMDAHL, G. Validity of the single processor approach to achieving large-scale computing capabilities. pp. 483-485.
- CARAGEA, D., SILVESCU, A., AND HONAVAR, V. A framework for learning from distributed data using sufficient statistics and its application to learning decision trees. International Journal of Hybrid Intelligent Systems 1, 2 (2004).
- CHEN, K., LU, R., WONG, C. K., SUN, G., HECK, L., AND TSENG, B. L. Trada: tree based ranking function adaptation. In 11 PROVOST, F., KOLLURI, V., AND FAYYAD, U. A survey of CIKM (2008), pp. 1143-1152.
- DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified data processing on large clusters. Commun. ACM 51, 1 (2008), 107-12 QUINLAN, J. R. Induction of decision trees. In Machine 113.
- hadoop.
- FRIEDMAN, J. H. Greedy function approximation: A gradient boosting machine. Annals of Statistics 29 (2001), 1189-1232.
- FRIEDMAN, J. H. Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 4 (February 2002), 367–378.
- GEHRKE, J., RAMAKRISHNAN, R., AND GANTI, V. Rainforest - a framework for fast decision tree construction of large datasets. In VLDB'98, Proceedings of 24rd International Conference on Very Large Data Bases, August 24-27, 1998. New York City, New York, USA (1998), A. Gupta, O. Shmueli, and J. Widom, Eds., Morgan Kaufmann, pp. 416-427.

- GRAHAM, R. L., AND GRAHAMT, R. L. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics 17 (1969), 416-429.
- 10 PANDA, B., HERBACH, J. S., BASU, S., AND BAYARDO, R. J. Planet: Massively parallel learning of tree ensembles. In VLDB 2009, Proceedings of the 35th Int'l Conf. on Very Large Data Bases (2009).
 - methods for scaling up inductive algorithms. Data Mining and Knowledge Discovery 3 (1999), 131-169.
 - Learning (1986), pp. 81–106.
- FOUNDATION, A. Apache hadoop project. lucene.apache.org/ 13 SHAFER, J. C., AGRAWAL, R., AND 0002, M. M. Sprint: A scalable parallel classifier for data mining. In VLDB'96, Proceedings of 22th International Conference on Very Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India (1996), T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda, Eds., Morgan Kaufmann, pp. 544-555.
 - 14 STATISTICS, L. B., AND BREIMAN, L. Random forests. In Machine Learning (2001), pp. 5-32.
 - 15 SU, J., AND ZHANG, H. A fast decision tree learning algorithm. In AAAI (2006).
 - 16 ZHENG, Z., CHEN, K., SUN, G., AND ZHA, H. A regression framework for learning ranking functions using relative relevance judgments. Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval (2007), 287-294.