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Introduction 

Gradient Boosted Decision 
Trees (GBDT) is a machine 
learning algorithm that 
iteratively constructs an 
ensemble of weak decision 
tree learners through boosting. 



What is GBDT? 

  Gradient Boosted Decision Trees was introduced by Jerome 
Friedman in 1999 

  An additive regression model over an ensemble of trees, fitted to 
current residuals, gradients of the loss function, in a forward step-wise 
manner  

  Favors many shallow trees (e.g., 6 nodes, 2000 trees) 

  Advanced Algorithms: GBRank, SmoothDCG 

  Numerous applications within Yahoo! 

  Blender in Bellkor’s winning Netflix solution 

+ + +  … 



Advantages 

  Feature normalization is not required 

  Feature selection is inherently performed during the learning process 

  Not prone to collinear/identical features 

  Models are relatively easy to interpret 

  Easy to specify different loss functions 



Disadvantages 

  Boosting is a sequential process, not parallelizable 

  Compute intensive 

  Can perform poorly on high dimensional sparse data, e.g. bag of 
words 



Known Implementations 

  Salford’s TreeNet 

  gbm package in R 

  PLANET: Massively Parallel Learning of Tree Ensembles with 
MapReduce, Panda et. al. 

  Tong Zhang implemented GBDT while at YRL 

  More implementations at this workshop 



Algorithm Overview 



Algorithm 

Algorithm: 

€ 

F0(x) = argminγ Ψ(yi,γ)
i=1

N
∑

For  m =1 to M  do :

     yim  =  - ∂Ψ(yi,F(x i))
∂Ψ(F(x i))

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
F (x )=Fm−1 (x )

,  i =1,N

     {Rlm}1
L  =   growtree({yim,x i}1

N )

     γ lm = argminγ Ψ(yi,Fm−1(xi) +γ)
x i ∈Rlm

∑

     Fm (x) =  Fm -1(x) +ν⋅ γ lm1(x∈Rlm )
l=1

L
∑

end

Friedman “Stochastic Gradient Boosting”, 1999 

New targets are computed 
at each iteration 

Responses for terminal 
nodes 

Shrinkage ν controls 
learning rate 

Grow L-terminal tree 

{y,x}: dataset 
Ψ: loss function 
γ: node score 
Μ: number of trees 
Ν: training set size 
Fm(x): mth tree 
yim: residuals 
ν: shrinkage 



GBDT Process 

  Each tree, partition sample space  by growing n nodes 

  Compute gradient and repeat  

Splitting a Node 

Partitioning 

Update Residuals 

Gradient 
Boosting 

Train a decision tree 
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Find the best split using Information Gain: 
•  Compute gain for each cut point 
•  Choose cut with highest gain 
•  Valid cutpoints: 

f1 < 1.5 
f1 < 2.5 
f1 < 3.5 
f2 < 0.5 

gain = 10 
gain = 30 
gain = 57  
gain = 25 

Splitting a node 
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Using best split, partition the data 
•  samples above the cut goes to left node 
•  samples below cut goes to right node 
•  find best cuts for new nodes 

f1 < 3.5 gain = 57 

f1<3.5 

residual’ += mean(targetnode) 

Partitioning 



Boosting 

€ 

Fm (x) = Fm−1(x) + ν ⋅ γ lm1(x ∈ Rlm )l=1

L
∑

gradientm+1(x) = label(x) − Fm (x)
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•  Gradient can vary depending on loss function, least 
squares shown 
•  Gradients are targets for next tree 
•  Stochastic boosting randomly subsamples training data for 
each tree 

+ 



Example Tree 

ftsc < 0.99 

ftsc <-1.82 

ftsc < -3.74 fbdistm<118.
94 

fprx<0.09 fqulen0<0.5 

fqunavctr_us 
< 0.03 

ftsc<4.06 

favedurh180
<83.5 

fpgprodrev<
6.5 

ftsc<5.98 

fpgprodrev<
5.5 

fcdgst<126.5 



MapReduce 
Implementations 



f0 f1 f2 f3 

s0 V0,0 V0,1 V0,2 V0,3 

s1 V1,0 V1,1 V1,2 V1,3 

s2 V2,0 V2,1 V2,2 V2,3 

s3 V3,0 V3,1 V3,2 V3,3 

s4 V4,0 V4,1 V4,2 V4,3 

s5 V5,0 V5,1 V5,2 V5,3 

Horizontal: Finding Cuts 

Partition Data: 

  Each mapper emits (<feature, value>, <residual, weight>) pairs 

  Reducers aggregates pairs and sorts 

  Process scales as more nodes are added 

Reducer 1 

Mapper 1 

Mapper 2 

Mapper 3 



Finding Splits 

•  Each mapper emmits: 
(<feature,value>,<residual,weight> 
•  Reducer aggregates cuts and sorts 
•  Output: Sorted list of candidate 
cutpoints 
•  Single pass over sorted list to 
compute best split 



Partitioning Data 

•  Split data according to cut 
•  Output to DFS 



MapReduce (horizontal) 

•  Scales with more mappers 
•  Method is slow! 
•  5 minutes to train 1 node 
•  Takes 211 minutes to train a 63 node tree 
on 1.2M x 500 feature dataset 
•  Reading from HDFS can take 1-2 
minutes.  We have 3 MapReduce jobs for a 
tree node 
•  Keep information in memory – vertical 
partitioning 



f0 f1 f2 f3 

s0 V0,0 V0,1 V0,2 V0,3 

s1 V1,0 V1,1 V1,2 V1,3 

s2 V2,0 V2,1 V2,2 V2,3 

s3 V3,0 V3,1 V3,2 V3,3 

s4 V4,0 V4,1 V4,2 V4,3 

s5 V5,0 V5,1 V5,2 V5,3 

Vertical: Partition Data 

  Each mapper gets a subset of 
features 

  Read features into memory 

  Mappers are persistent until 
ensemble is trained 

Mapper 1  Mapper 2 



Mapper 2 

Mapper 1 

•  f6 
•  f7 
•  f8 

Find best local 
cuts 

partition 

Update 
residuals 

Wait for 
all cuts Start 

•  f3 
•  f4 
•  f5 

Find best local 
cuts 

•  f3<2.5 

partition 
•  Output 

residuals 

Update 
residuals 

•  f6 
•  f7 
•  f8 

Find best local 
cuts 

Wait for 
all cuts start 

•  f3 
•  f4 
•  f5 

Find best local 
cuts 

NFS NFS 

Vertical Mappers 



MPI Implementation 



Message Passing Interface 

  Message Passing Interface (MPI) allows many computers to communicate with 
each other. 

  Dominant model in high performance computing 

  Scalable, portable 

  Distributed shared memory for high RAM jobs 

  OpenMPI is an open source implementation of MPI 

  Low level and can be complicated to use 

  Modified OpenMPI to run on Hadoop 

  Fault tolerance 
Master Slave 1 Slave 2 

Out 

Input 
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Each machine gets a feature 
•  Machine 1 finds local best split on f1 
•  Machine 2 finds local best split on f2 
•  Use MPI to broadcast local splits 
•  Best global split found 

f1 < 1.5 

f1 < 2.5 

f1 < 3.5 

f2 < 0.5 

gain = 10 

gain = 30 

gain = 57  

gain = 25 

Splitting a node 

Machine 1 

Machine 2 

Global Best:  f1 < 3.5  
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Using best cut, split the data 
•  Only Machine 1 has f1 in memory, partition dataset 
•  Partition is maintained in indices, send updated 
index to others 
•  All machines updates residuals 

f1 < 3.5 gain = 57 

f1<3.5 

residual’ += mean(targetnode) 

Partitioning 



€ 

Fm (x) = Fm−1(x) + ν ⋅ γ lm1(x ∈ Rlm )l=1

L
∑

gradientm+1(x) = label(x) − Fm (x)
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•  Scores are kept for all samples through training of trees 
•  All machines computes new gradients and updates targets for 
next tree 
•  Repeat until finished 

+ 

Boosting 



Experiments 



Scalability 

MPI implementation faster than MapReduce using vertical partitioning 



Scalability 

Scalability for different dataset sizes 



Experiment 

+ + +  … 

+ + +  … 

Horizontal: 211 minutes x 2500 trees = 366 days x 100 machines 
Vertical:  28 seconds x 2500 trees = 19.4 hours x 20 machines   

5 seconds x 2500 trees = 3.4 hours x 10 machines  

1800% less node hours! 

MapReduce 

MPI 



Application 

  Dataset (2M doc, 600 features) 

  Tree Parameters: typical 

›  Trees(2500), Terminal Nodes(20) 

  Running time: (Runtime Memory: 4GB) 

›  Single thread, single machine: 7 days 

›  Multi-threads (6), single machine: 3.5 days 

›  MPI on grid: 9 hours with 20 nodes, 12 hours with 10 nodes 

›  More complex loss: 16 days -> 36 hours 



Conclusions 

  We have implemented a distributed version of GBDT 

  Distributed version running faster than sequential version 

  Can handle larger datasets that sequential version cannot 

  Advanced algorithms based on GBDT can benefit from this framework 

  Implementation GBDT uses MPI on Hadoop 

  GBDT 6X faster than achievable using MapReduce 

  1800% reduction in node hours 



Thanks! 
For more info: jerryye@yahoo-inc.com 
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