Gradient Boosted Decision Trees on Hadoop
Agenda

- Overview
 - GBDT
 - Implementations
 - Related Work
- GBDT
 - Learning a tree
 - Boosting
- Method
 - MapReduce Implementations
 - MPI Implementation
- Results
- Conclusion
Gradient Boosted Decision Trees (GBDT) is a machine learning algorithm that iteratively constructs an ensemble of weak decision tree learners through boosting.
What is GBDT?

- Gradient Boosted Decision Trees was introduced by Jerome Friedman in 1999
- An additive regression model over an ensemble of trees, fitted to current residuals, gradients of the loss function, in a forward step-wise manner
- Favors many shallow trees (e.g., 6 nodes, 2000 trees)
- Advanced Algorithms: GBRank, SmoothDCG
- Numerous applications within Yahoo!
- Blender in Bellkor’s winning Netflix solution
Advantages

- Feature normalization is not required
- Feature selection is inherently performed during the learning process
- Not prone to collinear/identical features
- Models are relatively easy to interpret
- Easy to specify different loss functions
Disadvantages

- Boosting is a sequential process, not parallelizable
- Compute intensive
- Can perform poorly on high dimensional sparse data, e.g. bag of words
Known Implementations

- Salford’s TreeNet
- gbm package in R
- PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce, Panda et. al.
- Tong Zhang implemented GBDT while at YRL
- More implementations at this workshop
Algorithm Overview
Algorithm

Algorithm:

\[F_0(x) = \arg \min_\gamma \sum_{i=1}^{N} \Psi(y_i, \gamma) \]

For \(m = 1 \) to \(M \) do:

\[y_{im} = -\left[\frac{\partial \Psi(y_i, F(x_i))}{\partial \Psi(F(x_i))} \right]_{F(x) = F_{m-1}(x)} \quad , \; i = 1, N \]

\[\{R_{lm}\}_1^L = \text{growtree}(\{y_{im}, x_i\}_1^N) \]

\[\gamma_{lm} = \arg \min_\gamma \sum_{x_i \in R_{lm}} \Psi(y_i, F_{m-1}(x_i) + \gamma) \]

\[F_m(x) = F_{m-1}(x) + \nu \cdot \sum_{l=1}^{L} \gamma_{lm} 1(x \in R_{lm}) \]

end

\{y, x\}: dataset
\Psi: loss function
\gamma: node score
M: number of trees
N: training set size
\(F_m(x) \): \(m \)th tree
\(y_{im} \): residuals
\nu: shrinkage

New targets are computed at each iteration

Grow L-terminal tree

Responses for terminal nodes

Shrinkage \(\nu \) controls learning rate

Friedman “Stochastic Gradient Boosting”, 1999
GBDT Process

- Each tree, partition sample space by growing n nodes
- Compute gradient and repeat

Train a decision tree

- Splitting a Node
- Partitioning
- Update Residuals
- Gradient Boosting
Splitting a node

Find the best split using Information Gain:
- Compute gain for each cut point
- Choose cut with highest gain
- Valid cutpoints:

<table>
<thead>
<tr>
<th>labels</th>
<th>f_1</th>
<th>f_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

- $f_1 < 1.5\quad gain = 10$
- $f_1 < 2.5\quad gain = 30$
- $f_1 < 3.5\quad gain = 57$
- $f_2 < 0.5\quad gain = 25$
Partitioning

Using best split, partition the data
- samples above the cut goes to left node
- samples below cut goes to right node
- find best cuts for new nodes

\[f_1 < 3.5 \quad \text{gain} = 57 \]

residual’ += mean(target\text{node})
Boosting

\[F_m(x) = F_{m-1}(x) + \nu \cdot \sum_{l=1}^{L} \gamma_{lm} 1(x \in R_{lm}) \]

\[\text{gradient}_{m+1}(x) = \text{label}(x) - F_m(x) \]

- Gradient can vary depending on loss function, least squares shown
- Gradients are targets for next tree
- Stochastic boosting randomly subsamples training data for each tree
Example Tree

- **ftsc < 0.99**
 - **ftsc < -1.82**
 - **fprx<0.09**
 - **ftsc<4.06**
 - **favedurh180<83.5**
 - **fpgprodrev<6.5**
 - **fqunavctr_us<0.03**
 - **ftsc<4.06**
 - **favedurh180<83.5**
 - **fpgprodrev<5.5**
 - **fpgprodrev<6.5**
 - **ftsc<5.98**
 - **fcdgast<126.5**
MapReduce Implementations
Horizontal: Finding Cuts

Partition Data:
- Each mapper emits \(<\text{feature}, \text{value}\>, \,<\text{residual}, \text{weight}\>) pairs
- Reducers aggregates pairs and sorts
- Process scales as more nodes are added
Finding Splits

- Each mapper emits:
 \((\text{<feature, value>}, \text{<residual, weight>})\)
- Reducer aggregates cuts and sorts
- Output: Sorted list of candidate cutpoints
- Single pass over sorted list to compute best split

Algorithm 1: Aggregating candidate splits

```python
map(key, value):
    F ← set of features
    sample ← split(value, delim)
    for f in F do
        key = (f, sample[f])
        value = (sample[residual], sample[weight])
        emit(key, value)
    end for

reduce(key, values):
    residual_sum ← 0
    weight_sum ← 0
    for v in values do
        residual_sum ← residual_sum + v.residual
        weight_sum ← weight_sum + v.weight
    end for
    emit(key, (residual_sum, weight_sum))
```
Partitioning Data

- Split data according to cut
- Output to DFS

Algorithm 2 Partitioning a Node n

```plaintext
map(key, value):
    sample ← split(value, delim)
    if sample[n.feature] < n.splitpoint then
        residual = sample[residual] + n.left_response
    else
        residual = sample[residual] + n.right_response
    end if
    emit(key, value)
```
MapReduce (horizontal)

- Scales with more mappers
- Method is slow!
- 5 minutes to train 1 node
- Takes 211 minutes to train a 63 node tree on 1.2M x 500 feature dataset
- Reading from HDFS can take 1-2 minutes. We have 3 MapReduce jobs for a tree node
- Keep information in memory – vertical partitioning
Vertical: Partition Data

- Each mapper gets a subset of features
- Read features into memory
- Mappers are persistent until ensemble is trained
Vertical Mappers

Mapper 1
- f_3
- f_4
- f_5

Find best local cuts

partition

$\cdot f_3<2.5$

• Output residuals

Update residuals

Wait for all cuts

Mapper 2
- f_6
- f_7
- f_8

Find best local cuts

NFS

Wait for all cuts

Start

NFS
MPI Implementation
Message Passing Interface

- Message Passing Interface (MPI) allows many computers to communicate with each other.
- Dominant model in high performance computing
- Scalable, portable
- Distributed shared memory for high RAM jobs
- OpenMPI is an open source implementation of MPI
- Low level and can be complicated to use
- Modified OpenMPI to run on Hadoop
- Fault tolerance
Splitting a node

Each machine gets a feature:
- Machine 1 finds local best split on f_1
- Machine 2 finds local best split on f_2
- Use MPI to broadcast local splits
- Best global split found

Machine 1:
- $f_1 < 1.5$, gain = 10
- $f_1 < 2.5$, gain = 30
- $f_1 < 3.5$, gain = 57

Machine 2:
- $f_2 < 0.5$, gain = 25

Global Best: $f_1 < 3.5$
Partitioning

Using best cut, split the data
- Only Machine 1 has f_1 in memory, partition dataset
- Partition is maintained in indices, send updated index to others
- All machines updates residuals

\[
f_1 < 3.5 \quad \text{gain} = 57
\]

residual’ += mean(target_{node})
Boosting

\[
F_m(x) = F_{m-1}(x) + \nu \cdot \sum_{l=1}^{L} \gamma_{lm} 1(x \in R_{lm})
\]

\[
\text{gradient}_{m+1}(x) = \text{label}(x) - F_m(x)
\]

- Scores are kept for all samples through training of trees
- All machines computes new gradients and updates targets for next tree
- Repeat until finished
Experiments
Scalability

MPI implementation faster than MapReduce using vertical partitioning
Scalability for different dataset sizes
Experiment

MapReduce

Horizontal: 211 minutes x 2500 trees = 366 days x 100 machines
Vertical: 28 seconds x 2500 trees = 19.4 hours x 20 machines

5 seconds x 2500 trees = 3.4 hours x 10 machines

1800% less node hours!

MPI
Application

- Dataset (2M doc, 600 features)
- Tree Parameters: typical
 - Trees(2500), Terminal Nodes(20)
- Running time: (Runtime Memory: 4GB)
 - Single thread, single machine: 7 days
 - Multi-threads (6), single machine: 3.5 days
 - MPI on grid: 9 hours with 20 nodes, 12 hours with 10 nodes
 - More complex loss: 16 days -> 36 hours
Conclusions

- We have implemented a distributed version of GBDT
- Distributed version running faster than sequential version
- Can handle larger datasets that sequential version cannot
- Advanced algorithms based on GBDT can benefit from this framework
- Implementation GBDT uses MPI on Hadoop
- GBDT 6X faster than achievable using MapReduce
- 1800% reduction in node hours
Thanks!
For more info: jerryye@yahoo-inc.com
References
1 AMDAHL, G. Validity of the single processor approach to achieving large-scale computing capabilities. pp. 483–485.
5 FOUNDATION, A. Apache hadoop project. lucene.apache.org/hadoop.