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Why a workshop?

My Cartoon View of the World
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Anecdotally: Startups with 10° events/day.
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Old techniques don't work

Computers aren’t keeping up
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Core lIssues

Efficiency: More efficient algorithms matter.
Parallelism: More data than any machine can handle.

Distribution: Data can’'t move.

In the beginning, anyone could create an email server (and | did).

Spam became a business model. Individual email servers are
typically overwhelmed. Large spam filters at centralized email

: Microsoft
Google Research Yariog!

providers— LABS

How do we Efficiently learn to classify Spam in a Parallel
Distributed environment?
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Next Year: Large Scale Learning Book with 204 chapters
edited by Ron Bekkerman, Misha Bilenko, & me.



What's in the book?

Parallel Unsupervised Learning Methods
@ Information-Theoretic Co-Clustering with MPI

@ Spectral Clustering MapReduced
© K-Means with GPU
@ Latent Dirichlet Analysis with MPI

It's very hard to compare different results.
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Ground Rules

Ginormous caveat: Prediction performance varies wildly depending
on the problem—method pair.

The standard: Input complexity/time.
= No credit for creating complexity then reducing it. (Ouch!)

Most interesting results reported. Some cases require creative
best-effort summary.
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Many others defy summarization. Highlights:
@ Feature selection & frequent item systems.

@ Chapters on new parallel computing frameworks of plausible
interest to ML people.



The Morning

7:00 Poster setup

7:30 Langford—Intro

8:00 Tsitsiklis—Averaging algorithms and distributed optimization
9:00 Coffee & Posters

9:20 Xiao—Optimal Distributed Online Prediction Using
Mini-Batches

9:45 Petrov—MapReduce/Bigtable for Distributed Optimization
10:10 Minitalks
10:30 Posters & Break



The Afternoon

2:00
3:30
4:30

4:55
5:15
5:40
6:00
6:30

Unofficial Vowpal Wabbit Tutorial
Guestrin—Machine Learning in the Cloud with GraphLab

Singh—Distributed MAP Inference for Undirected Graphical
Models

Posters & Break

Ye—~Gradient Boosted Decision Trees on Hadoop
More Minitalks

Summary/Panel/Discussant

Posters & talking






