
Learning on Cores, Clusters, and Clouds

Alekh Agarwal (Berkeley)

Lawrence Cayton (MPI-Tuebingen)

Ofer Dekel (Microsoft)

John Duchi (Berkeley & Google)

John Langford (Yahoo!)



Why a workshop?
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Anecdotally: Startups with 109 events/day.



Old techniques don’t work
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Linear work is unavoidable but even linear time often inadequate.



Core Issues

Efficiency: More efficient algorithms matter.

Parallelism: More data than any machine can handle.

Distribution: Data can’t move.

In the beginning, anyone could create an email server (and I did).

Spam became a business model. Individual email servers are
typically overwhelmed. Large spam filters at centralized email

providers—

How do we Efficiently learn to classify Spam in a Parallel
Distributed environment?
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The Wider Context

3 Years ago: Samy Bengio, Corinna Cortes, Dennis DeCoste,
Francois Fleuret, Ramesh Natarajan, Edwin Pednault, Dan
Pelleg, Elad Yom-Tov Efficient Machine Learning -
Overcoming Computational Bottlenecks in Machine Learning

2 Years ago: Robert Thibadeau, Dan Hammerstrom, David
Touretzky, Tom Mitchell Parallel Implementations of Learning
Algorithms: What have you done for me lately?

1 Year ago: Alex Gray, Alexander Smola, Arthur Gretton,
Joseph Gonzalez, Carlos Guestrin Large-Scale Machine
Learning: Parallelism and Massive Datasets

Us.

Next Year: Large Scale Learning Book with 20+ chapters
edited by Ron Bekkerman, Misha Bilenko, & me.
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What’s in the book?

Parallel Unsupervised Learning Methods

1 Information-Theoretic Co-Clustering with MPI

2 Spectral Clustering MapReduced

3 K-Means with GPU

4 Latent Dirichlet Analysis with MPI

It’s very hard to compare different results.



... But let’s try
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Ground Rules

Ginormous caveat: Prediction performance varies wildly depending
on the problem–method pair.

The standard: Input complexity/time.

⇒ No credit for creating complexity then reducing it. (Ouch!)

Most interesting results reported. Some cases require creative
best-effort summary.
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Supervised Training
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Supervised Testing (but not training)
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The rest

Many others defy summarization. Highlights:

1 Feature selection & frequent item systems.

2 Chapters on new parallel computing frameworks of plausible
interest to ML people.



The Morning

7:00 Poster setup

7:30 Langford—Intro

8:00 Tsitsiklis—Averaging algorithms and distributed optimization

9:00 Coffee & Posters

9:20 Xiao—Optimal Distributed Online Prediction Using
Mini-Batches

9:45 Petrov—MapReduce/Bigtable for Distributed Optimization

10:10 Minitalks

10:30 Posters & Break



The Afternoon

2:00 Unofficial Vowpal Wabbit Tutorial

3:30 Guestrin—Machine Learning in the Cloud with GraphLab

4:30 Singh—Distributed MAP Inference for Undirected Graphical
Models

4:55 Posters & Break

5:15 Ye—Gradient Boosted Decision Trees on Hadoop

5:40 More Minitalks

6:00 Summary/Panel/Discussant

6:30 Posters & talking



Have Fun!


