My Flow Chart for Learning Optimization

1. Choose **efficient effective** algorithm

2. Use **compact binary** representations

3. **goto 1**
How to Parallelize

1. If *(Computationally Constrained)*

2. then **GPU/FPGA/ASIC** (Problem: server nonstandard)

3. else

 (a) If low pass algorithm

 (b) then **Map-Reduce**

 (c) else **Research Problem**.
Feature Split?—Singh

1. Supports \textit{nonlinear/nonconvex} optimization.

2. \textbf{Minimizes delay} (\textit{= minimizes regret}).

3. \textit{Only byte/example/node}.

4. \textit{No model consistency issues}.
Example Split?—Slav

1. Less bandwidth (maybe).

2. At least with convex functions, averaging is often sane.

3. Programming is easy—reuse sequential algorithm directly.
Communication Complexity?

1. $O(\text{feature})$ — Xiao?

2. $O(\text{example})$ — Ye

3. $O(\text{parameter})$ — Petrov
Consensus Question

How do we best subvert Map-Reduce for Machine Learning?
How should a cluster node be constructed?

1. Local Storage

2. GPU?
Huge/Large/Fast/Very X

1. “This dataset is huge/larger than anything I could previously solve.”

2. “It works much faster than my algorithm used to work.”

Not much information... Maybe Input complexity / time?
What’s a cloud (for ML)?

1. A commercial-access cluster?

2. Cheaper on-demand cluster?